
LABOR ATR FO INnLM OF
A-EUVI 'A.'

Bruce * Ma :wl NI IN

Unclassified
SECURITY CkASSIFICAIlON OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is, REPORT SECURITY CLASSIFICAT.ON Ib RESTRICTIVE MARKINS

Unclasshfied
Is, SECURITY CiASSIFICATION AUTHORITY 3 OISTRIIUMIONIAVAILANILITY OF RT'ORT

Ap'L. 'd for public release; distribution
1 b O(CI-AS$ZAfVON IDOWNGRADING SCHED)ULE i inlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMIER(S)

__T/LCS/TR _6_ N000 lt,-87-K-825
6A NAME OF PERFIDRMING ORGANIZATION fb OFFICE SYMBOL Ia NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science Office of 'laval Research/Depc. of Navy

6c. AOORESS (City. State. and ZIPCo*J 7b. AOODRESS(Oft State. and Z* C*)

545 Technology Square Information Systems Program
Cambridge, 14A 02139 Arlington, VA 22217

IB, NAME OF FUNDINGiSPONSOkING 1b OFFICE SYMBOL 1 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ap'kIf) blt)
DARPAIDOD

V_ AOORESS (City. State. nd ZIP C) 10 SOURCE OF FUNDING NUMBERS

* PROGRAM IPROJECT ITASK IWORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO. NO ACCESSION NO

Arlington, VA 22217 1A

It TITLE (linde SerWRy ClaW1CuOnJ)

Locality in Parallel Computation
12 PERSONAL AUTHOR(S)

Maggs, Bruce facDowell

13a, TYPE OF REPORT 113b. TIME COVERED 14, DATE OF REPORT (15ontADey) 15 PAGE COUNT

Technical x.-, = FROM TO September 1989 158
16. SUPPLEMENTARY NdT4TIOV',

17 COSATI COF)ES W1 SUBECT TERMS (Concm on fvvoh it nweuary And ; .n ,y by block u m,- ,)
FIELD GROUP SU.GROUP parallel coputation, -ix, "A connection networksi, Jaclet

routing algorithms, -area uitiversal networks, fatftrecs;
I" distributed random-access machines., graph algorithms, net. +u.

19, ABSTRACT (Confinu on tevrse of necena~ry Nd intify by block n m be)

This thesis explores strategies for exploiting locality in three major areas of parallel computation:
packet routing, graph algorithms, and network emulations. Each of these areas is covered by a
separate chapter.

Chapter 1 describes a network.independent approach to the packet.routing problem. Our

strategy is to partition the problem into two states: a path.selection stage and a scheduling

stage. In the first stage we find paths for the packets with small congestion, c, and dilation. d.

Once 1he paths are fixed, both are lower bounds on the time required to deliver the packets. In
the sedond stage we find a schedule for the movement of each packet along its path so that no
two pahkets traverse the same edge at the same time, and so that the total time and maximum
queue 4ize required to route all of the packets to their destinations are minimized.

20. DISTRIIUTIONIAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Inclue Ala Code) 22c. OFFICE SYMBOLJudy Lictle (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Unclassified

19 continued

Although path.selection strategies vary from network to network, we show that there is an
efficient on.line scheduling algorithm for the entire class of layered networks. When applied to
an N-packet problem, the algorithm produces a schedule of length O(c + d + log N), with high
probability.

The algorithm has many applications to routing and sorting. Among them are the first on-
line algorithms for routing N-packets on an N-node shuffle-exchange graph in O(log N) steps
using constant.size queues and for routing kN packets on an N-node k.dimensional array with
maximum side length M in 0(k01) steps using constant-size queues. The scheduiing algorithm
can also be used as a subroutine in sorting algorithms, It yields the first asymptotically optimal
algorithms for sorting on butterfly, shuffle-exchange, and multidimensional array networks using
constant-size queues.

The algorithm can also be applied to the construction of area-universal networks: N-node
networks with VLSI.layout area 0(N) that can simulate all other networks with area 0(N)
with only O(log N) slowdown.

In Chapter 1 we also prove the existence of a schedule of length O(c + d) for any set of
packets whose paths have congestion c and dilation d (in any network) that uses constant-size
queues. Unfortunately, no efficient algorithm for constructing the schedule is known.

Chapter 2 introduces a model for parallel computation, called the distri6uted random.access
machine (DRAM), in which the communication requirements of parallel algorithms can be
evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are
implemented by routing messages through a communication network. It explicitly models the
congestion of messages across cuts of the network.

We introduce thE notion of a conservative algorithm as one whose communication require-
ments at each step can be bounded by the congestion of pointers of the input data structure
across cuts of a DRAM. A conservative algorithm is guaranteed not to generate undo conges-
tion in any underlying network. Chapter 2 presents conservative algorithms for a variety of

graph problems. Problems such as computing treewalk numberangs, finding the separator of a
tree, and evaluating all subexpressions in an expression tree can be solved in O(log N) steps
for N-node trees by conservative algorithms for an exclusive-read exclusive-write DRAM. More
crw)lex problems such as finding a minimum-cost spanning forest, computing biconnected
components and constructing an Eulerian cycle require O(log 2 N) Steps, for graphs of size N.

For concurrent-read concurrent-write DAM's, all of these problems can be solved by O(log V)
step conservative algorithms.

Chapter 3 examines the problem of how efficiently a host network can emulm.t a guest
network. The goal is to emulate T6 steps of an N-.node guest network on an Njg node
host network. We call an emulation work-preset Lng it the time required by the host, T.4 is
O(TGIVG/NH) because then both the guest Lnd host networks perform the 3ume amount of
total work (processor-time product), O(TGJVG), to within a constant factor. A work.preserving
emulation is efficient because it achieves optimal speedup over a sequential emulation of the
guest. We nay that at. emulation is real.time if TH = O(TG), because then the host emulates
t'e guest with con,.tant delay.

Although manz isolated emulation results have been proved for specific networks in the
past, and measures such as dilation and congestion were known to be important, the field has

lacked a model within which general results and meaningful lower bounds could be proved. We
attempt to provide such a model, along with techniques for proving lower bounds based on

comparing the locality the networks.
Some of the more interesting and diverse results in Chapter 3 include a proof that a linear

array can emulate a (much larger) butterfly in a work-preserving fashion, but that a butterfly
cannot emulate an expander (of any size) in a work-preserving fashion; a proof that a mesh can
be emulated in real time in a work-preserving fashion on a butterfly, even though any 0(t)-to- I
embedding of the mesh has dilation fl(log .V); and a proof that an N-node butterfly can emulate
an N log N-node shuffle-exchange graph in a work-preserving fashion, and vice-versa.

-+ Chapter 4 presents an algorithm for finding a minimum-cost spanning tree of an N-node
graph on an N X N mesh-connected computer. The algorithm has the same O(N) running time
as the previous algorithms, but it is much simpler.

Locality in Parallel Computation

by

Bruce MacDowell Miggs

S.B., Computer Science arid !Engineering
Mssachusetts Institute ofr 'lcchnology

(198)
S.M., Electrical Engineering and Computer Science

Massachusetts 11nstitute of Technology
(1986)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillnenl of tile r,.juiremcents for tile degree of

Doctor of Philosophy Accesw For -
NTIS CRA&!
DTIC TAS "

at tie Unen-lotinced
JUSti11id |01l1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ay
Distibution I

September 1989 Avadbbilty C-des

Avail andlJo
@ Massachusetts Institute of Technology 1989 &St SpAeclt

All rights reserved {
Signature of Author_ _ _

Department of Electrical Engineering and Computer Science
September 1, 1989

Certified by
Charles E. [,eiserson

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Locality in Parailel Computation

by

Bruce MacDowell iaggs

Submitted to tht Department of Electrical Engineering and Computer Science
on S-plember 1, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of P~hilosophy

Abstract

This thesis explores strategies for exploiting locality in three major areas of parallel computation:
packet routing, graph algorithms, and network emulations. Each of these areas is covered by a
separate chapter.

Chapter 1 desczibes a network.independent approach to the packet.routing problem. Our
stratt.y is to partition the problem into two stages: a path-selection stage and a scheduling
stage. In the first stage we find paths for the packets with small congestion, c, and dilation, d.
Once the paths are fixed, both are lower bounds on the time required to deliver the packets. In
the second stage we find a schedule for the rovement of each packet along its path so that no
two packets traverse the same edge at the same time, and so that the total time and maximum
queue size required to route all of the packets to their destinations are minimized.

Although path-selection strategies vary from network to network, we show that there is an
efficient on-line scheduling algorithm for the entire class of layered networks. When applied to
an N-packet problem, the algorithm produces a schedule of length 0Cc + d + log N), with high
probability.

The algorithm has many applications to routing and sorting. Among them are the first on-
line algorithms for routing N-packets on an N-node shuflle-exchange graph in 0(logN) steps
using constant-size queues and for routing kN packets on an N-node k-dimensional array with
maximum side length At in O(kM) steps using constant-size queues. The scheduling algorithm
can also be used as a subroutine in sorting algorithms. It yields the first asymptotically optimal
algorithms for sorting on butterfly, shuffle-exchange, and multidimensional array networks using
constant-size queues.

The algorithm can also be applied to the construction of area-universal networks: N-node
networks with VLSI-layout area O(N) that can simulate all other networks with area 0(N)
with only 0(logN) slowdown.

In Chapter 1 we also prove the existence of a schedule of length 0(c + d) for any set of
packets whose paths have congesilon c and dilation d (in any network) that uses constant-size
queues. Unfortunately, no efficient algorithm for constructing the schedule is known.

Chapter 2 introduces a model for parallel computation, called the dislribalcd random-access
machine (DRAM), in which the communication requirements of parallel algorithms can be
evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are
implemented by routing messages through a communication network. It explicitly models the
congestion of messages across cuts of the network.

We introduce the notion of a cormcrvAtice algorithm as one whose communication require-
ments at each step can be bounded by the congestion of pointers of the input data structure
across cuts of ,A DRAM. A conservative algorithm is guaranteed not to generate undo conges-
tion in any underlying network. Chapter 2 presents conservative algorithms for a variety of
graph problems. Problems such as computing treewalk numberings, finding the separator of a
tree, and evaluating all subexpressions in an expression tree can be solved in O(log N) steps
for N-node trees by conservative algorithms for an cxclusive-read exclusive-write DRAM. More
complex problems such as finding a minnmum.cost spanning forest, computing biconnected
components and constructing an Eulerian cycle require 0(log2 N) steps, for graphs of size N.
For concurrent-read concurrent-write DRAM's, all of these problems can be solved by O(log N)
step conservative algorithms.

Chapter 3 examines the problem of how efficiently a host network can emulate a guest
network. The goal is to emulate To steps of an N0 .node guest network on an Nil node
host network. We call an emulation work-prtscruing if the time required by the host, Ty1 is
O('a Nc/jN,,) because then both the guest and host networks perform the same amount of
total work (processor-titne product), G(TGio), to within a constant factor. A work-preserving
emulation is efficient because it achieves optimal speedup over a sequential emulation of the
guest. We say that an emulation is real-lime if 711 0(TC), because then the host emulates
the guest with constant delay.

Although many isolated emulation results have been proved for specific networks in the
past, and measures such as dilation and congestion were known to be important, the field has
lacked a model within which general results and meaningful lower bounds could be proved. We
attempt to provide such a model, along with techniques for proving lower bounds based on
comparing the locality the networks.

Some of the more interesting and diverse results in Chapter 3 include a proof that a linear
array can emulate a. (much larger) butterfly in a work-preserving fashion, but that a butterfly
cannot emulate an expander (of any size) in a work.preserving fashion; a proof that a mesh can
be emulated in real time in a work-preserving fashion on a butterfly, even though any O(1)-to-1
embedding of the mesh has dilation f(log N); and a proof that an N.node butterfly can emulate
an N log N-node shuffle-exchange graph in a work-preserving fashion, and vice-versa.

Chapter 4 presents an algorithm for finding a minimum-cost spanning tree of an N-node
graph on an N" x N mesh-connected computer. The algorithm has tle same O(N) running time
as the previous algorithms, but it is much simpler.

Keywords: parallel computation, fixed-connection networks, packet routing algorithms, area-
universal networks, fat-trees, distribunj random-access machines, graph algorithms, network
emulations.

Thesis Supervisor: Charles E. Leiserson
Title: Associate Professor of Computer Science and Engineering

Contents

Acknowledgments 9

Introduction 11

Packet routing .. 11

Distributed random.access machines 13

Emulations 14

Mesh.based algorithms ... 16

1 Packet routing algorithms 17

1.1 Introduction .. 17

1.1.1 Past work ... 18

1.1.2 Our approach 20

1.1.3 Outline of the results 24

1.2 The existence of asymptotically optimal schedules 26

1.2.1 A prelintinary result 27

1.2.2 The main result 29

1.3 On.line algorithms .. 36

1.3.1 An O(c+dlogN) on-line algorithm 3

..3.2 An O(c + d+ log N) on-line algorithm for layered networks37

1.3.3 Applications 40

1.4 Routing on meshes .. 41

1.5 Routing on butterflies 42

1.6 Routing on multidimensional arrays 44

6 CONTENTS

1.7 Routing on shuM .exchange graphs 47

1.7.1 Good and bad nodes 48

1.7.2 A layered network 49

1.7.3 Path selection and congestion k 50

1.7.4 Packets from bad nodes 52

1.7.5 Summary 53

1,8 Construction of area and volume-universal networks 53

1.9 Sorting on butterflis. 58

1.9.1 The algorithm 58

1.9.2 Analysi 61

1.9.3 Boundingthe load 61

1.9.4 Bounding the congestion at each switch 64

1.9.5 Bounding the cumulative delay 65

1.9.6 Putting it all together 67

1.10 Countrexamples to on-line algorithms 68

1.11 Remarks 72

2 Distributed random-access machines 75

2.1 Introduction ... 75

2.2 The DRAM model .. 77

2.3 Conservative algorithms 80

2.4 List contraction 83

2.5 Tree contraction ... 88

2.6 Treefix computations 93

2.7 Graph algorithms .. 95

2.8 Concurrent reads and writes 100

2.8.1 A new definition of load 101

2.8.2 A shortcut lemma for concurrent reads and writes 101

2.8.3 A conservative pointer jumping technique 102

2.8.4 A minimum-cost spanning forest algorithm 104

2.9 Remarks .. 107

CONTENTS 7

3 Work-preserving emulations 113

3.1 Introduction 113

3.1.1 The motivation 115

3.1.2 A closer look at the computationul model 117

3.1.3 Our results 119

3.1.4 Previous work 121

3.2 Lower bounds 121

3.2.1 Distance-.baed lower bound 122

3.2.2 Congestion-based lower bound 123

3.3 Emulations by arrays 127

3.4 Emulations by complete binary trees 128

3.4.1 Work-preserving emulations of bounded.degree trees 128

3.4.2 Congestion lower bound for complete ternary trees 130

3.5 Emulations by butterfly networks 133

3.5.1 Work-preserving emulations of binary trees........ 133

3.5.2 Emulation of meshes 133

3.5.3 Embedding the shuffle-exchange graph in the butterfly 135

3.5.4 Layouts for the shuffle.exchange graph with optimal area and volume .. 138

3.5.5 A work preserving emulation of a shuffle.exchange graph 138

3.6 Emulations by shuffle.exchange graphs 138

3.6.1 Work preserving emulations of arbitrary binary trees138

3.6.2 Embedding little butterflies in the shuffle.exchange graph139

3.6.3 Application to sorting on a shuffle.exchange graph 140

3.6.4 Real time emulations of arrays 140

3.6.5 A work preserving emulation of the butterfly 140

4 Minimum-cost spanning tree 141

4.1 Introduction ... 141

4.2 Reduction to a path-finding problem 142

4.3 Implementation on a mesh-connected computer1.43

8 CONTENTS

Directions for further research 145

Packet routing .. 145

Distributed random-access machies147

Emulations 147

Bibliography 149

A4cknowledgments

I am indebted to Charles Leiserson for teaching me the meaning o scholarship. IlIi advice has

not always been easy to take, and I have often momentarily wished that his standards were

not so high. Yet, looking back over the past four years, I se that whenever Charles demanded

extra effort, It was well spent. Much of the research in this thesis was done in collaboration

with him.

Working with Tom Leighton has been a pleasure. The things that he pulls from his bag o '

tricks continue to surprise me.

Besides Tom and Charles, several others made direct contributions to this thesis. Richard

Koch, Satish Rao, and Arnold Rosenberg collaborated on various parts. I am particularly

grateful to Satish for helping work out the details of one section even while he was writing his

own thesis. Tom Cormen and James Park produced some of the figures, and Baruch Awerbuch

graciously served as a thesis reader.

I have benefited from many technical discussions with my friends at MIT and elsewhere.

Alok Aggarwal, Sanjeev Arora, Ravi Boppana, Ron Greenbetg, Jon Greene, Michelangelo

Grigni, Johan llastal, Joe Kilian, James Park, Nick Pippenger, Abhiram Ranade, John Rompel,

John Reif, Eric Schwabe, and Marc Snir all deserve mention.

During the past four years I have shared office NE43-313 with Tom Cormen, Sally Goldman,

Alex Ishii, and Cliff Stein. I will miss the camaraderie and hubbub of the office.

The support staff at the Laboratory for Computer Science has always been helpful. Arline

Benford and Be ilubbard kept me organized, and Sharon Thomas bent the rules for me.

Financial support was provided by an NSF Graduate Fellowship and by the Defense Ad-

vanced Research Projects Agency under Contract N0001-1-87-K-825.

Finally, I would like to thank my family and my wife Ginny for their support on the home-

front.

10

Introduction

This thesis explores strategies for exploiting locality in parallel computation. Locality is perhaps

best illustrated by the telephone system. A local phone call exhibits locality because it is

transmitted over a small physical distance and through few switching stations. On the other

hand, a long distance call may pass through many switching stations and span the globe. The

telephone company exploits the aggregate locality of a typical set of phone calls by allocating

more resources to local calls than to long distance calls. The communications hardware is

arranged in a hierarchy, with bushy local networks at the bottom and a sparser satellite system

at the top. The phone system itself may be said to exhibit locality in the sense that it reflects

the locality of a typical set of calls.

The routing network in a paralNl computer has a job much like that of the phone system.

It must deliver packets of information between different processors. In this thesis, however, we

shall restrict our attention to networks that are more tightly coupled than the phone system.

These networks route packets to their destinations via a series of globalky synchronized time

steps. We model a routing network as a graph, where the nodes correspond to processors or

switches, and the edges correspond to wires. At each step a packet can either traverse an edge

or wait in a queue, and each edge can transmit at most one packet. The time to deliver a set of

packets is the equal to the number of steps required for every packet tc reach its destination.

Packet routing

Two important measures of the locality of a set of packets are its congestion and dilation. The

congestion, c, of a set of packets is the maximum number of packets that use any edge of the

network. The dilation, d, is the length of the longest path taken by any packet. Both of these

11

12 INTRODUCTION

metzsures are h.wer bounds on the time required to deliver the messages. The congestion is

a lower bound because c packets must pass through some edge, and at most one packet can

traverse the edge at each time step. The dilation is a lower bound because some packet must

travel a distance of d and it can travel a distance of at most one in each time step.

Chapter 1 describes a network-independent approach to the packet routing problem. Our

strategy is to partition the problem into two stages: a path oelection stage and a scheduling

stage. The path.selection stage varies from network to network. Its goal is to find a set of

paths for the packets that exhibits locality, i.e., has small congestion and dilation. The goal of

the second stage is to determine when each packet should move, and when it should wait in a

queue. The second stage must ensure that at most one packet traverses each edge at each time

step. It should exploit the locality present in the paths produced by the first stage, i.e., the

time to deJiver the packets should be as cloe to the lower bounds c and d as possible and the

queue size should be minimized.

The focus of Chapter 1 is on the second stage. Two main scheduling results are proved there.
First we show that there is a schedule of length O(c + d) for any set of packets with congestion

c and dilation d (in any network) that uses constant-size queues. Unfortunately, no efficient

algorithm for constructing it is known. However, for the special case of layered networks, we

show that there is an efficient randomized algorithm for routing N packets in O(c + d + log N)

steps using constant-size queues.

The algorithm for routing packets on layered networks has many applications to routing

and sorting. Among them are the first on-line algorithms for routing N-packets on an N-node

shuMe-exchange graph in O(log N) steps using constant-size quel,!s and for routine kN packets

on an N-node k-dimensional array with maximum side length M in O(kM) steps using constant-

size queues. The routing algorithm can also be used as a subrcutine in sorting algorithms. It

yields the first asymptotically optimal algorithms for sorting on butterfly, shuffle-exchange, and

multidimensional array networks using constant-size qtteoes.

A second major application area is in the construction of area-universal networks: N-node

networks with VLSI-layout area O(N) that can simulate all other networks with area O(N)

with only O(logN) slowdown. (The generalization to three dimensions is straightforward.)

These networks are area-universal precisely because they display the kinds of locality present

INTRODUCTION 13

In the phone system. The communications hardware is arranged in a hierarchy, with most of it

devoted to making local connections.

Distributed random-access machines

Another important measure of locality is the load factor of a set of packet. Before defining

the load factor, we need a few other notions. A cut S of a network is a subset of the nodes

of the network. The cpacity cap(S) is the numbe! of wires connecting processors in S to the

rest of the netw ork, 3S. The load of a set M of packets on a cut S, load(M, S), is the number

of packets in At that must cross the cut S. The load factor of At on S, A(M, S) is the ratio

of the load to the capacity, A(A, S) = load(At, S)/cap(S). The load factor of At on the entire

network is the maximum load factor over all cuts, ,)(M) = maxs load(M, S). The load factor is

a lower bound on the congestion of any set of paths for the packets, and thus is a lower bound

on the time to deliver the packets.

Chapter 2 introduces a model called the Distributed Random-Access Machine (DRAM)

in which time required to deliver a set of packets is equal to its load factor. A DRAM is an

abstraction of a parallel computer in which memory accesses are implemented by routing packets

through a communication network. The model was originally intended to be an abstraction of a

class of area-universal networks called fat-trees [29, 56]. Fat-trees are well nodeled by DRAM's

becr.use, as we shall see in Chapter 1, the time to deliver a set Md of packets on an N-node

fat-tree is O(A(M) + log N), with high probability.

The notion of load factor can be extended to measure the locality of a data structure

embedded in a parallel computer. A natural way to embed a data structure in a DRAM is to

put one record of the data structure into each processor. The record can contain data, including

pointers to records in other processors. We measure the locality of an embedding by treating

the data structure as a set of pointers and generalizing the concept of load factor to sets of

pointers. The load of a set P of pointers across a cut S, denoted load(P, S), is the number of

pointers in P from a processor in S to a processor in 3, or vice versa. The load factor of P on

the entire DRAM is A(P) = maxs load(P, S)/cap(S). The load factor of a data structure is the

load factor of the set of its pointers.

A conservative algorithm is a DRAM algorithm in which the load factor of the set of mem-

14 INTRODUCTION

ory accesses produced at. each step does not exceed the load factor of the input data, structure.

A conservative algorithm exploits the locality in the input data structure because it never pro.

ducts more congestion across cuts of the DIRAMI than is implicit in the input data structure.

Concequently, a, conservative algorithm is guaranteed not to produce undue congestion in any

underlying network. With the help of a lemma, for "shortcutting" pointers in a data struc-

ture without increasing Its load, we design fast conservative algorithms for a variety of graph

problems. Problems such as computing treewalk numberings, finding the separator of a tree,

and evaluating all tubexpressions in an expression tree can be solved in O(iogN) steps for

N-node trees by conservative algorithms for an exclusive-read xclusive.write DRAM. More

complex problems such as finding a minimum-cost spanning forest, computing biconnected

components and constructing a. Euerian cycle require O(log2 ') steps, for graphs of size N.

For concurrent-read concurrent-write DRAM's, all of these problems can bei solved by O(log N)

step conservative algorithms.

Emulations

Of particular interest is the special case where the embedded data structure is a network. An

embedding is a map from a guest network to a host network that takes nodes of the guest to

nodes of the host, and edges of the guest to paths in the host. Three important measures of an

embedding are its congestion, dilation, and load. The congestion and dilation of the paths are

analogous to the congestion and dilation defined for the paths taken by a set of packets. The

load of an embedding is the maximum number of guest nodes mapped to any one of the host

nodes. The assignment of two meanings to the word load is unfortunate, but well established.

In this thesis, the intended meaning should always be clear from the context. Furthermore, the

load of a set M of packets on a cut S is denoted by load(M, S), while the load of an embedding

is denoted by 1.

A guest network is typically embedded in a host network so that the host can emulate

some computation to be performed by the guest. An important consequence of the scheduling

results of Chapter 1 is that if a guest network can be embedded in a host network with load 1,

congestion c, and dilation d, then the host can emulate the guest with slowdown 0(l + c + d).

Most of the efficient emulation schemes that we know of arise directly from an embedding of

INTRODUCTION 15

a guest network in a. host with small congestion, dilation, and load. As we shall see, however,

a good embedding of the guest in the host is not required for the host to perform an efficient

evaulation of the guest.

Chapter 3 examines the problem of how efficiently a host network can emulate a guest

network. The goal is to emulate To steps of an No-node guest network on an Nt node

host network. We call an emulation work.presrving if the time required by the host, Tin is

O(ToNo/NIt) because theu both the guest and host networks perform the same amount of

total work (processor-time product), O(/oNo), to within a constant factor. A work-preserving

emulation is efficient because it achieves optimal speedup over a sequential emulation of the

guest. We say that an emulation is real-time if TH = O(TG), because then the host emulates

the guest with constant delay.

Although many isolated emulation results have been proved for specific networks in the

past, and measures such as dilation and congestion were known to be important, the field has

lacked a model within which general results and meaningful lower bounds could be proved. We

attempt to provide such a model, along with techniques for proving lower bounds based on

comparing the locality the networks. As a general rule, networks that exhibit locality are easier

to emulate than those that do not.

The simplest measure of the locality of a network is its diameter. Let 6(u,v) denote the

distance between a. pair of nodes u and v, i.e., the length of the shortest path between u and

v. The diameter, D, of a network is the maximum over all pairs (u,v) of the distance between

u and v, D = n 6x(,,,)6(u, v). In general, a network with large diameter exhibits more locality

than a network with small diameter. For exanple, a linear array exhibits more locality than a

shuffle-exclange graph.

The expansion rate is another important measure of the locality of a network. Let Br(u)

denotW the ball of radius r around a node u, i.e., the set of nodes within distance r of u,

Br(u) = {vl6(u, v) _5 r). For a set S of nodes, the rncighborhood of S, N(S), is the set of nodes

within a distance of I of some node in S, excluding those nodes in S, N(S) = UuCsBj(u)) - S.

We say that an n-node network has expansion rate e if for every set S of size at most n/2, the

size of the neighborhood of S is a least eIS!. We call a network for which the expansion rate E

is at least some fixed positive constant an expander. An expander exhibits little locality.

16 INTRODUCTION

Some of the more interesting and diverse results in Chapter 3 include a proof that a linear

array can emulate a. (much larger) butterfly in a work.preserving fashion, but that a butterfly

caAnot emulate an expander (of any size) in a. work.preserving fashion; a proof that a mesh can

be emulated in real time in a work-preserving fashion on a butterfly, even though any 0(1)-

to-I embedding of the mesh in a butterfly has dilation !l(log N); and a proof that an N-node

butterfly can emulate an N log N-node shuflte.exchange graph in a work-preserving fashion,

and vice-versa.

Mesh-based algorithms

Chapter 4 presents an algorithm for finding a minimum-cost spanning tree of an N-node graph

on an N x N mesh.connected computer. The algorithm has the same O(N) running time as

the previous algorithms, but It is much simpler. In VLSI models, the mesh is the ultimate local

network because each processor in the mesh is connected to a small.number of neighbors by

minimum length wires.

Chapter 1

Packet routing algorithms

1.1 Introduction

Figure 1-1 illustrates the standard graph model for packet routing. The shaded nodes labeled

1 through 6 represent processors or switches. The edges between the nodes represent wires. At

the end of each edge is an edge queue that can hold a small number of packets (in this example,

to). A packet is depicted by a square box containing the label of its destination. Before the

routing begins, packets are stored at their origins in special initial queue#. For example, packets

4 and 5 are stered in the initial queue at node 1.

The goal is to route each packet from its origin to its destination via a series of synchronized

time steps. At each step at most one packet can traverse each edge. Furthermore, a packet can

traverse an edge only if at the beginning of the step its edge queue is not full. Upon traversing

the last edge on its path, a packet is removed from the edge queue placed in a special final queue

at its destination. For simplicity, the final queues are not shown in Figure 1-1. Independent

of the routing algorithm used, the size of the initial and final queues are determined by the

particular packet routing problem to solved. Thus, any bound on the maximum queue size

required by a routing algorithm refers to the edge queues only.

The task of designing an efficient packet routing algorithm is central to the design of most

large.scale general-purpose parallel computers. In fact, even the basic unit of time in some

parallel machines is measured in terms of how fast the packet router operates. For example,

This chapter describes joint research with Tom Leighton and Satish Rao [53].

17

18 CIfA11TER 1. PACKET ROUTING ALGORITHiMS

Figure 1-1: A graph model for packet routing.

the speed of an xlgorithm in the Connection Machine is often measured in terms of routing

cycis (roughly the time to route a random permutation) or petit cycles (the time to perform

a. atomic step of the routing algorithm). Similarly, the performance of machines like the BBN

Butterfly is substantially influenced by the speed and rate of successful delivery of its router.

Packet routing also provides an important bridge between theoretical computer science

and applied computer science; it is through packet routing that a real machine such as the

Connection Machine is able to simulate an ideal'zed machine such as the CRCW PRAM. More

generally, getting the right data to the right place at the right time is an important, interesting,

and challenging problem. Not surprisingly, it has also been the subject of a great deal o(

research.

1.1.1 Past work

The first major result in packet routing is due to Benes [101 who showed that the inputs

and outputs of a Benes network can be connected in any permutation by a set of disjoint

paths. Waksman [98] then gave a simple off-line algorithm for finding the paths in linear time.

Given the paths, it is straightforward to route a permutation of packets from the inputs to the

outputs of an N-node Benes network in O(log N) steps using queues of size 1. Although the

inputs comprise only O(N/ log N) nodes, it is possible to route any permutation of N packets

1.. INTRODUCTION 19

in O(log N) steps by pipeliniug O(log N) such permutations. Unfortunately, no efflieeit on-line

algorithm for finding the paths is known.

Shortly thereafter, lBatcher [9) devised an elegant and practical on.line algorithm for *orting

N packets on an N-node shuffle-exchange graph in log2 N steps using queues of size 1. The

algorithm can be used to route any pe-mutation of packets by sorting based on destination ad.

dress. The result extends to routing many-one problems provided that (as is typically assumed)

combining can be used to merge packets th;," have a common destination.

No better deterministic algorithm was found until Ajtai, Komlos, and Szemeredi (2) solved

a classic open problem by constructing an O(log N).depth sorting network. Leighton [47) then

used this O(N log N).node ntwork to construct a degree 3 N-node network capable of solving

any N-packet routing problem in O(log N) steps using queues of size 1. Although this result is

optimal up to constant factors, the constant factois are quite large and the algorithm is of no

practical use. Hence, the effort to find fast deterministic algorithms has continued. Recently

Upfal discovered an O(log N).step algorithm for routing on an expander.based network called

the multibutterfly [95). T., gorithm solves the routing problem directly without reducing it

to sorting, and the constant factors are much smaller than those of the AKS-based algorithms.

In (521, we show that the multibutterfly is fault tolerant and improve the constant factors in

Upfal's algorithm.

There has also been great success in the development of efficient randomized packet routing

algorithms. The study of randomized algorithms was pioneered by Valiant and Brebner (97] who

showed how to route any permutation of N packets in O(logN) steps on an N-node hypercube

with queues of size O(log N) at each node. Although the algorithm is not always guaranteed

to work, it is guaranteed to work with probability at least 1 - 1/N for any permutation.

This result w.s improved in a succession of fundamental papers by Aleliunas [3], Upfal [9.4],

Pippenger [76], und Ranade [81]. Aleliunas and Upfal developed the notion of a delay path and

showed how to route on the shuffle-exchange and butterfly graphs (respectively) in O(log N)

steps with queues of size O(log ,). Pippenger was the first to eliminate the need for large

queues, and showed how to route on a variant of the butterfly in O(logN) steps with queues

of size 0(1). Ranade showed how combining could be used to extend the Pippenger result to

include many-one routing problems, and tremendously simplified the analysis required to prove

20 CHAPTER 1. PACKET ROUTING ALGORITHMS

such a result. As a consequence of Ranade's work, it has finally become posible to simulate a

step of an N-processor CRCW PRAI on an N-node butterfly or hypercube in O(logN) steps

ujing constant-size queues on each edge.

Concurrent with the development of these hypercube-related packet routing algorithms has

been the development of algorithms for routing in meshes. The randomized algorithm of Valiant

and Irebner can be used to route any permutation of N packets on a W X VT mesh in

O(vrR") steps using queues of size O(log N). Kunde [431 showed how to route deterministically

in (2+ c)VW steps using queues of size O(1/r). Also, Krizanc, Rajasekaran, and Tsantilis [41]

showed how to randomly route any permutation in 2V1 + O(log N) steps using constant size

queues. Most recently, Lsdghton, Makedon, and ToUis discovered a deterministic algorithm for

routing any permutation in 2VN " - 2 steps using constant-size queues [49], thus achieving the

optimal time bound in the worst case.

1.1.2 Our approach

One deficiency with the state-of-the-art in packet routing is that aside from Valiant's paradigm

of "first routing to a random destination," all of the algorithms and their analyses are very

specifically tied to the network on which the routing is to take place, as well as to the requirement

that packets are first routed to destinations that are (in some sense) random. For example, the

butterfly routing rigorithms are all quite different than the mesh algorithms in the way that

queue size is kept constant. Moreover, the butterfly and hypercube algorithms ae to specific to

those networks that no O(log N).step constant-queue-size algorithm was known for the closely

related shuffle-exchange graph. The lack of a good routing algorithm for the shuffle-exchange

graph is one of the reasons that the butterfly is preferred to the shuffle-exchange graph in

practice.

In this c'apter, we take a significant step towards the development of a universal approach

to packet routing. Our approach to the problem differs from previous approaches in that we

separate the process of selecting packet paths from the process of timing packet movements

along the paths. More precisely, given any underlying network, and any selection of paths for

the packets, we study the problem of timing the movement of the packets so as to minimize the

total time and maximum queue size needed to route all the packets to their correct destinations.

1.1. INTRODUCTION 21

Figure 1-2: A set of paths for the packets. Each packet follows &shortest path to its destination.
The dilation is d = 3 and the congestion ic c = 3.

Of course, there must be some correlation between the performance of the algorithm and

the selection of the paths. In particular, the maximum distance, d, tr"eled by any packet

is away, & lower bound on the time required to route all packets. We call this distance the

dilation of the paths. Similarly, the largest number of packets that must traverse a single edge

during the entire course of the routing is a lower bound. We call this number the congestion,

c, of the paths.

Viewed in terms of these parameters, then, a routing problem can be broken into two stages.

In Stage 1, we select riths for the packets so as to minimize c and d. In Stage 2, we schedule

the movement of the packets so as to minimize the total time and maximum queue size. To

illustrate this two stage approach, let us return to the routing problem of Figure 1-1.

Figure 1-2 shows one way of choosing the paths for the packets. [ere, each packet takes a

shortest path from its origin to its destination. For example, packet 1 follows a path from node

3 to 2 to 4 to 1. Since no packet traverses more than three edges, the dilation is d = 3. Packets

3, 4, and 5 all traverse the edge from 1 to 2, but no more than three packets traverse any other

edge. Thus, the congestion is c = 3.

A schedule for the packets is displayed in Figure 1-3. A schedule simply specifies which

K 2CHAPTER 1. PACKET ROUTING ALGORITHMS

time step
12 3 4 5

SXXX

2 X
packet 3 X X X

4 X X
5 X XX

Figure 1-3: A schedule for the packets. An x in row p and column i indicates that at time t
packet p moves. A blank indicates that it waits.

packets move and which wait at each time step. An x in row p and column t indicates that

at time t packet p traverses an edge and enters the queue at the end of that edge. A blank

indicates that at time t packet p waits in a queue. For example, packet 3 moves at time step I t

waits at steps 2 and 3, and then moves again in steps 4 and 5.

The step-by-step progress of the packets as they follow the paths from Figure 1.2 according

to the schedule of Figure 1-3 is illustrated in Figure 1-4.

Part (a) shows the packets in their initial queues before the routing begins. In the first step,

packet 1 takes the edge from node 3 to node 2, 3 takes the edge from 5 to 1, and 4 takes the

edge from 1 to 2. Packets 2 and 5 must wait because the first edges on their paths are taken

by packets 1 and 4, respectively.

The positions of the packets at the end of time step I are shown in part (b). In step 2,
packets 1, 2, and 5 move, while packets 3 and 4 wait. Packet 2 reaches its destination, is
removed from the queue at the end of the edge from 3 to 2, and enters the final queue for node

2.

At the end of step 2, the packets are positioned as shown in part (c). Note that packet 2,
which resides in the final queue for node 3, is not pictured. In step 3, packets 1 and 4 move,

I. INTRODUCTION 23

M OM

(e)

Figure 1-4: The step-by-step progress of the packets. The positions of the packets at the ends
of steps 0 through 4 are shown in parts (a) through (e) respectively.

24 CIIAPTEIR 1. PACK ETROUTING ALGORITIMS

but packt w a~st wait because the queue that it wishes to enter is full at the beginning of the

step.

Aft,r te 3, oM y packets 3 and 5 remain en route. Both packets move in step 4, and teach

their -estlnations in step 5. Their positions at the ends of steps 3 and 4 are show in parts (d)

an4t.*), respectively.

For many networks, Stage I is easy. We simply use Valiant's paradigm of first routing to a

random destination, and tlten routing to the correct destination. It is easily shown for meshes,

butterties, shuffle.e,.hange graphs, etc., that this approach yields values of c and d that ar

within a sm.U constant factor of the diameter of the network, which is as well a can be done.

Moreover, this technique also usually works for many-one problems provided that the address

spate is randomly hashed.

Stage 2 has traditionlly been the hird part of routing. Curiously, however, we have found

that by ignoring the underlying network and the method of path selection, Stage 2 actually

becomes easier to solve! Hence we will be able to obtain rvaults for rout;ing that are both simpler

and far more general than existing approaches. Among other things, we will be able to route

on the N-node mesh in O(VIi) steps using constant size queuee with the same algorithm that

uses O(log N) steps and constint-size queues on the butterfly. We will alo be able to route on

the shuffl.exchange graph in O(logN) steps with constant-size queues. Also, by shl ,ng how

to route efficiently on a fat-tree, we provide the first examples of volume and area-universal

networks that require only 0(log N) slowdown.

1.1.3 Outline of the results

Our most difficult result is a proof that any set of packets whose paths have congestion c and

dilation d can be scheduled so as to complete the routing in 0(c + d) steps using constant-size

queues. This result is optimal up to constant factors, and substantially improves the naive

bound of O(cd) steps and 0(c) size queues. Unfortunately, the result is highly nonconstructive,

and therefore is useful only if substantial amounts of off-line compu.tation are available for the

routing. On the other hand, the result is robust in the sense that it provides near-optimal

schedule of packet movements for anzy s-t of paths and any underlying network. Such robustness

is particularly useful when dealing with routing problems on arbitrary distributed networks as

1.J. INTRODUCTION 25

In (-]. The proof of the result is contained In Section 1.2.

We do not know whether or not there is an on-line algorithm that can route any set of paths

in 0(c + d) steps with constant-size queues. It is not difficult to devise a randomized on-line

algorithm to schedule any set of N paths in 0(c+ dlogV) steps using queues of size O(Iog N).

In special cases, however, we can do better. For example, a slight variant of Ranade's algorithm

can be used to schedule on-line any set of N paths on a bounded-degree layered network in

O(c + d + log N) steps using constant-size queues. By a. layered network, we mean a network

in which each edge connects a level i node to a level i + I node, where the level numbers range

from 0 to d. For example, the butterfly is layered this fashion. The algorithm is randomized,

but requires only E(log2 N) bits of randomness to succeed with high probability. The proof of

this result is included in Section 1.3. Curiously, the proof is simpler than the previous proof of

the same result applied specifically to routing random paths in butterflies [811. (The fact that

Ranade's algorithm can be used in this general context has also beer, observed by Ranade (82].)

The on-line algorithm for layered networks can immediately be applied to obtain good

routing algorithms for meshes and butterflies. With some extr- effort, it can be applied to

obtain the first algorithm for routing kN packeta on an N-node k-dimensional array with

maximum side length M in 0(kM) steps. constant.size queues, and for routing N-packets on

an N-node shuffle-exchange graph in 0(log N) steps using constant-size queues. It can also be

applied to construct a class of networks that are area universal in the sense that the network in

the class with N processors has area O(N), and can, with high probability, simulate in 0(log N)

steps each step of any other network of area O(N). An analogoui result is shown for L class

of volume-universal networks. The routing algorithm is used as a subroutine in algorithms

for sorting on butterflies and multidimensional arrays. The details of these applications are

included in Sections 1.4 through 1.9.

This thesis leaves open the question of whether or not there is an on-line algorithm that

can schedule any set of paths in 0(c + d) steps using constant-size queues. We suspect that

finding such an algorithm (if one exists) will be a challenging task. Our negative suspicions

are derived from the fact that we can construct counterexamples to :aost of the simplest on-

line algorithms. In other words, for several natural on-line algorithms (including the algorithm

described in Section 1.3) we can find packet paths for which the algorithm will construct a

26 CIAPTER 1. PACKET ROUTING ALGORITHMS

schedule using substantially more than fl(c + d + log N) steps. Several of the counterexamples

are included in Section 1.10.

1.2 The existence of asymptotically optimal schedules

The main result in this section is a proof that for any set of packets whose paths are edge-

sihple and have congestion c and dilation d, there is P schedule of length O(c + d) in which

at most one packet traverses each edge of the network at eaclh step, and at most O(t) packets

wait in each queue at each step. Note that there are no restrictions on the size, topology, or

degree of the network or on the number of packets.

Ourstrategy for constructing an efficient schedule is to make a succession of refinements to

the "greedy" schedule, So, in which each packet moves at every step until it reaches its final

destination. This schedule is as short as possible; its length is only d. Unfortunately as many as

c packets may use an edge at a single time stop in So, whereas in the final schedule at most one

packet is allowed to use an edge at each step. Each refinement will bring us closer to meeting

this requirement by bounding the congestion within smaller and smaller frames of time.

The proof uses the Lovasz local lemma (89, pp. 57-58] at each refinement step. Given a

set of "bad" events in a probability space, the lemma provides a simple inequality which when

satisfied guarantees that with probability greater than zero, no bad event occurs. The inequality

relates the probability that each bad event occurs with the dependence among them. A set of

events A,,... ,Am in a probability space has depenience at most b if every event is mutually

independent of some set of m - b other bad events. The lemma is nonconstructive; for a discrete

probability space it proves that there is some elementary outcome that is not in any bad event,

but does not specify that outcome.

Lemma 1 (Lovasz) Let A,,... ,Am be a set of "bad" events each occurring with probability

p with dependence at most b. If 4pb < 1, then with probability greater than zero, no bad event

occurs. 0

'An edge-simple path ases no edge more titan once.

1.2. TIIE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCIIEDULES 27

1.2.1 A preliminary result

Before proving the main result of this section, we show that there is a schedule of length

(c + d)20(0%*(c+')) that uses queues of size log(c + d)20Q0 ' (c+d)). This preliminary result is

substantially simpler to prove because of the relaxed bounds on the schedule length and queue

size. Nevertheless, it illustrates the basic ideas necessary to prove the main result.

Theorem 2 For any sct of packets whose paths are edge-simple and have congestion c and

dilation d, ther- :* a scheduk ira which at most one packet traverses each edge at each step with

length (c + d)20(05*(c+d)) and maximum queue si:¢- log(c + d)20(k*i(C+')).

Proof: For simplicity, we shall assume without loss of generality that c = d, so that the bounds

on the length and queue size are a2 0 "*d) and (log d)2 0(; " *), respectively.

The proof has the following outline. The first step is to assign each packet a delay chosen

randomly, independently, and uniformly from the range [1,od, where a is ; fixed constant th.%t

will be determined later. In the resulting schedule, S1 , a packet assigned a delay of z waits

in its initial queue for z steps, then moves on to its destination without waiting again until it

enters is final queue. The length of S, is at most (I + a)d. Next we break the schedule into

(I+ a)d/logd sets of logd consecutive time steps, as shown in Figure 1-5. Each of these sets is

called a log d-frame. We use the Lovasz local lemma to show that there is some way of choosing

the initial delays so that in each of these logd.fraines at most logd packets pass through any

edge. Finally, we view each log dframe as a routing problem with dilation logd and congestion

log d, and solve it recursively.

To apply the Lovasz Local Lemma, we associate a bad event with each edge. The bad event

for edge e is that more than log d packets use e in any log d-frame. To show that there is a

way of choosing the delays so that no bad event occurs, we need to bound the dependence, b,

among the bad events and the probability, p, of each individual bad event occurring.

The dependence calculation is straightforward. Whether or not a bad event occurs depends

solely on the delays assigned to the packets that pass through the corresponding edge. Thus,

two bad events are independent unless some packet passes through both of the corresponding

edges. Since at most c = d packets pass through an edge, and each of these packets passes

through at most d other edges, the dependence, b, of the bad events is at most cd = d2 .

28 CHAPTER 1. PACKET ROUTING ALGORITIMS

1time step (+a)d

packetj

log d

Figure 1-5: Schedule S1. The schedule is derived from the greedy schedule, So, by assignint
each packet a random initial delay in the range jl,ad], We use the Lovasz local lemma to show
that within each logd.frame, at most logd packets pass through each edge.

Computing the probability of each bad event is a little trickier. Let p be the probability of

the bad event corresponding to edge e. Then

ld\(ogld ogd/

This expression is derived as follows. There are (I + a)d/logd different log d-frames, and we

bound p by summing over all frames the probability that more than log d packets pass through e

in the frame. The number of pickets passing through c in the frame has a binomial distribution.

There are d independent BernoJlli trials, one for each packet that uses e. Since at most logd

of the possible ad delays will actually send a packet through e in the frame, each trial succeeds

with probability logd/ad. (lHere we use the assumption that the paths are edge-simple.) The

probability of more than logd successes is at most () W

For sufficiently large a, the product 4pb is less than 1, and thus, by the Lovasz Local

Lemma, there is some assignment of delays such that at most logd packets use any edge in any

log dMframe.

Each log d.frarne can be viewed as a separate scheduling problem where the origin of a

packet is its location at the beginning of the frame, and its destination is its location at the

end of the frame. If at most log d packets use each edge in a log d-frame, then the congestion of

the problem is logd. The dilation is also logd because in logd time steps a packet can move a

distance of at most logd. In order to schedule each frame independently, a packet that arrives

at its destination before the last step in the rescheduled frame is forced to wait there until tile

1.2. TIle EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCIIEDULES 29

next frame begins.

All that remains is to bound the length of the schedule and the size of the queues. The

recursion proceeds to a depth of O(log" d) at which point the frames have size 0(i), and at

most 0(l) packets use each edge in each frame. The resulting schedule can be converted to one

in which at most one packet uses each edge in each time step by slowing it down by a constant

factor. The length of the final schedule is d2° (k " *'. The bound on the queue size follows from

the observation that no packet waits at any one spot (other than its origin or destination) for

more than (logd)20 (1d) consecutive time steps, and in the final schedule at most one packet

traverses each edge at each time step. 0

1.2.2 The main result

Proving that there is a schedule of length O(c + d) using constant-size queues is more difficult.

Removing the 20(6(+)) factor in the length of the schedule seems to require delving into

second order terms in the probability calculatioits, and reducing the queue size to 0(l) mandates

greater care in spreading delays out over the schedule.

Before proceeding, we need to introduce some notation. The frame congestion, C, in a

T-frame is the largest number of packets that traverse any edge in the frame. The relative

congestion, R, in a T-frame is the ratio CIT of the congestion in the frame to the size of the

frame.

Theorem 3 For any set of packets whose paths are edge-simple and have congestion c and

dilation d, there is a schedule in which at most one packet traverses each edge of the network

at each step with length O(c + d) and mazimum queue size 0(1).

Proof: To make the proof more modular, bounds on frame size and relative congestion after

each step in the construction are stated as lemmas. These lemmas and their proofs are included

within the proof of the theorem. W assume without loss of generality that c = d, so that the

bound on the length of the schedule is O(d).

As berore, the strategy is to make a succession of refinements to the greedy schedule, So. The

first refinement is special. It transforms So into a schedule S, in which the cclative congestion

in each log d-frame is at most 0(1). Thereafter, each refinement transforms a schedule Si with

30 CHAPTER 1. PACKET ROUTING ALGORITHMS

Figure 1-6: A refinement step. Each refinement transforms a schedule S, into a slightly longer
schedule S.+. The framne size is greatly reduced in S- 1, yet the relative congestion within a
frame remains about the same, i.e., 1(+) <I() and r(+)) .

relative congestion at most r(') in arty frame of size 10) or greater into a schedule Si+l with

relative congestion at most r(i+) in any frame of size 1i0+1) or greater, where r(+1) s r('Q and

j(+1) < 1(, as shown in Figure 1-6. As well shall see, after j refinements, where j = O(log" d),

we obtain a schedule Sj with relitive congestion O(1) in every frame of size ko or greater, where

k0 is some constant. From Sj it is straightforward to construct a schedule of length O(c + d)

in which at most one packet traverses each edge of the network at each step, and at most O(1)

packets wait in each queue at each step.

At the start, the relative congestion in a d-frame of S0 is at most 1. We begin by assigning

each packet a random delay chosen uniformly from I to d at the beginning of the greedy schedule

So. Using the Lovaz local lemma, it is possible to show that there is some way of choosing the

delays so that in the resulting schedule S1, the relative congestion is at most r() = O(I) in any

frame of size 1(i) = logd or greater.

Next, we repeatedly refine the schedule to reduce the frame size. As we shall see, the relative

congestion r(i+1) and frame size 1(0+1) for schedule Si+ are given by the recurrences

{ (0()
i= 1

r(')(1 +0(1)10I W) i >1

1.2. TI[E EXISTENCE OF ASYMPTOTICALLY OPTIMA L SCHIEDULES 31

and

1(+I) { logd i=1

log, 10) i > 1

which have solutions ji) = 0(1) and M = 0(1) for sorie j, where j = O(log* d).

We have not explicitly defined the values of r(Q) and 1(' for which the recursion terminates.

lowever, in several places in the proof that follows we implicitly use the fact that 1(0) is

sufficiently large or r() is sufficiently small that some inequality holds. The recursion terminates

when the first of these inequalities fails to hold. When this happens, one of r(Q or 1(i) is 0(1),

which implies that the other is also.

An important invariant that we main maintain throughout the construction is that in sched.

ule S,+ every packet waits at most once every 1() steps. As a consequence, a packet waits at

most once every f)(1) steps in Si, which implies both that the queues in Sj cannot grow larger

than 0(1) and that the total length of Sj is O(d). Schedule Sj almost satisfies the requirement

that at most one packet traverse each edge in each step. By simulating each step of Sj in 0(1)

steps we can meet this requirement with only a factor of 2 increase in the queue size and a

factor of 0(1) increase in the running time.

The rest of the proof describes a refinement step in detail. For ease of notation, we use I

and r in place of 1() and r().

The first step in the ith refinement is to break schedule Si into blocks of 213 + 211 - I

consecutive time steps. Each block is rescheduled independently.

For each block, each packet is assigned a random delay chosen independently and uniformly

from 1 to r. A packet assigned a delay of z must wait for x steps at the beginning of the block.

In order maintain the invariant that in schedule S+ every packet waits at most once every
1(i) steps, the packet is not delayed for x consecutive steps at the beginning of the block, but

instead a delay is inserted every F steps in the first xl steps of the block.2 A packet that is

delayed x steps reaches its destination at the end of the block by step 213 + 212 - I + X. Since

some packet may have delay z = I, th :-escheduled block must have length 213 + 212.

2Before the delays for schedule S,+i have been inserted, a packet is delayed at most once in each block of S..
Prior to inserting each new delay into a block, we check if it is within jC0) steps of the single old delay. If the
new delay would be too dose to the old delay, then it is simply not inserted. The loss of a single delay in a block
has a negligible effect on the probability calculations in the lemmas that follow.

32 CHAPTER 1. PACKET ROUTING ALGORITHMS

time stp 23+ 32 +2j2

packet 17(1+1/1 I Il I I I I I I II

Figure 1-7: Bloundi on frame size and relative congestion after inserting delays into Si. lHere
It = loe I and r, = r(1 + O()/v--7).

In order to Independently reschedule the next block, the packets must reside in exactly the

same queues at the end of the rescheduled block that they did at the end of the block of Si.

Since some packets arrive early, they must be slowed down. Thus, if a packet is assigned delay

x, then a delay is inserted every I steps in the last I(!- x) steps of the block. Note that at the

beginning of the first block and end of the last block, it is not necessary to separate the delays

by I steps, because the packetc reside in their initial and final queues, respectively.

lemmas 4 through 6 bound the frame size and relative congestion in various parts of the

block after the delays are inserted into Si. The bounds are shown in Figure 1-7. Inserting

delays may increase the relative congestion in the 12 steps at the beginning and end of each

block. Lemma 4 shows that by increasing the frame size from I to 12 we can bound the relative

congestion in these regions by r(1 + 1/!). Lemma 6 shows that between the first and last
12 steps we can decrease the frame size from I to log2 I, while only increasing the relative

congestion in each frame fromt r to r(1 + O(1)/Vl 7). The proof of Lemma 6 uses Lemma 5

to bound the relative congestion over a wide range of frame sizes.

Lemma 4 For any choice of delays, the relative congestion in any frame of size 12 or greater

after the delays are inserted is at most r(I + 1/I).

Proof: After the delays are inserted, a packet can use an edge in a T.frame if it used the edge

in the frame or in any of the I steps before the frame in Si. Thus, at most r(T + I) packets

can use an edge in the T-frame. For T _ 12, the relative congestion is at most r(1 + 1/1). 0

Lemma 5 In any schedule, if the relative congestion in every frame of size T to 2T - 1 is at

1.2. TIlE EXISTENCE OF ASYMIPTOTICALLY OPTIMAL SCHEDULES 33

most R then the relative congestion in any firnic of si:e T or greater is at most R.

Proof: Consider a frame of size T', where T' > 2T - 1. The first CLT'/TJ - I)T steps of the

frame can be broken into T.frames, each with relative congestion R. The remainder of the

V-frame consists of a single frame of size between T and 2T - 1 steps in which the relative

congestion is also at most R. 0

Lemma 0 There is some way of choosing the packet delays so that in between the first and last
2 steps of a block, he relative congestion in any frame of si:e I = log2 I or greater is at most

ri = r(1 + tl), where C, = O(1)/4lt.

Proof: With each edge we associate a bad event. For edge c, a bad event occurs when more

than rzT packets use c in any T-frame for T in the range 1 to 2lt - 1. To show that no bad

event occurs, we need to bound both the dependence of the bad events and the probability that

an individual bad event occurs.

\Ve first bound the dependence. At most r(213 + 212 - I) packets use an edge in the block'.

Each of these packets travels through at most 213 + 212 - I other edges in the block. As we shall

see later, it will always be true that r = r(1) = 0(1). Thus a bad event depends on b = 0(14)

other bad events.

Now let us compute an upper bound on the probability, pl, that more than rili packets

use an edge in a particular 11-frane. Since a packet may be delayed up to I steps before the

frame, any packet that uses e in the frame or in any of the I steps before the frame in Si may

use e after the delays are inserted into Si. Thus, there are at most r(]'+ I,) packets that can

use e in the frame. For each of these the probability that the packet use, e in the frame after

being delayed is at most (I/1). If we assume that no packet uses an edge more than once, then

these probabilities are independent. Thus, the probability pi that more than rIl packets use

the frame is at most

r(i +Ia)((1+ I) (r1)(~1j 1r(+Ii)-k.
k=r 1l

3Throughout the following lemmas we make references to quantities such as 'I packets or log" I time steps,
when in fact rI and log4 I may not be integral. Rounding these quantities to integer values when necessary does
not affect the correctness of tire proof. For ease of exposition, we shall henceforth cease to consider the issue.

34 CHAPTER 1. PACKET ROUTING ALGORITHMS

Let ri = r(1 + ri). We bound the series as follows. There are at most r(I + h) terms, and the

largest of these occurs for k = rih. Applying the inequalities (I +x) _< e, in(1 z) 2 x - z2/2

for 0 : z < 1, and (4) 5 (ac/b)$ for 0 < b < a to this term, we have

pi < r(J + I)C " 11#2(/2#- 11 /2ItaI - 2 1ti 1).

For J, = IogI and c, = k1/OW, we can ensure that p :_ 1/J, for any constant k2 > 0 by

making constant kt large enough.

Next we netd to bound the probability p2 that more than r, [t packets use c in any 11-frame

of the block. There are at most O(Pa) 11-frames. Thus p2 _ O(13)pi. By making the constant

k2 large enough, we can ensure that p2 _. 1/14, for any constant k3 > 0.

The calculations for frames of size 11 + 1 through 211 - 1 are similar. There are at most

0(13) frames of any one size, and 21, frame sizes between 1, and 21, - 1. By adjusting the

constants as before, we can guarantee that the probability p that more than r1T packets use c

in any T-framne for T between 11 and 211 - 1 is at most 1/ 1k for any constant k4 > 0.

Finally, since a bad event depends on only b = 0(16) other bad events, we can make 4p6 < I

by making k4 large enough. By the Lovaxz local lemma, there is some way of choosing the packet

delays so that no bad event occurs. 0

Although the frame size in the center of each block has decreased, it has increased from

I to 12 in the first and last]' steps of the block. Mkfore decreasing the frame size in these

regions, we move the block boundaries to the centers of the blocks, as shown in Figure 1-8. Now

each block of size 213 + 212 has a "fuzzy" region of size 212 in its center in which the relative

congestion ir, any frame of size 12 or greater is r(l +- 1/1). In the 13 steps bef')re and after

the fuzzy region, the relative congestion in any frame of size 11 or greater is ft. To reduce the

frame size in the fuzzy region, we assign a random delay from I to 2 to each packet. A packet

with delay x waits once every 13/z steps in the 13 steps before the fuzzy region and once every

13/(12 -x) steps in the 13 steps after the region. The rescheduled block now has size 213 + 312.

We now show that there is some way of inserting delays into the schedule before the fuzzy

region that both reduces the frame size in the fuzz) region, and does not increase either the

frame size or the relative congestion before the fuzzy region by much. A similar analysis holds

after the fuzzy region.

1.2. TilE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 35

1 ~~tirm Step ?+2J 13+1

packet

Figure 1-8: A block after recentering. The "fuzzy region" in the center of the block is shaded.

Lemma 7 There is some way of choosing the packet delays so that between ste ps 1 log I and

step$ 13, the relative congestion in any frame of si:e 11 or greater is at most r2 = r(I + C2),

where C2 = 0(1)/%47, and so that in the fu-y region the relative congest ion in any frame of

si:e. I or greater is at most r3 = r(1 + r3), where C3 = O(1)/v10jT.

Proof: Since no delays are inserted into the fuzzy region, the 3roof that the frame size has

been reduced in the fuzzy region is analogous to the proof of the previous lemma.

Before the fuzzy region, the situation is more complex. By the kth step, 0 :5 k 5 1 3, a

packet with delay x has waited zk/I3 times. Thus, the delay of a packet at the kth step varies

essentially uniformly from 0 to u = k/l. For u _ Ioj 3 I, or equivalently, k _ Ilog 3., we can

show that the relative congestion in any frame of size r, or greater has not increased much.

The proof uses the Lovasz local lemma as before. The calculation for the dependence is

unchanged. The probability p2 that more than r211 packets use an edge e in a particular

11-frame is given by

P2 r("+u) (r,(Ij, + U))(I Uj_1/Ur(1

Using the same inequalities as before, we have

p2 < O(rI(II + u)e-r"hII(I12-212=I//2iu-2tlC2U)).

For 1 = log2 1, U > log3l, it suffices that C2 = O(1)/0. 0

For steps 0 to Ilog3 I, we use the following lemma to bound the frame size and relative

congestion.

36 CIIAVTER 1. PACKET ROUTING ALGORITHMS

1 110 3 tim step ?3+3J1 223+

packet 'j12 11 11 11 41 1II 1 I j T I r I I r4 I

'2 1 1 1 1 2

Figure 1-: Final bounds on frame size and relative congestion. To reduce the frame size in the
fuzzy regions, delays are inserted only outside the shaded region. Here 1= lo 2 1, 12 = log 1,
r2 = ,(1+O(l)/% 7),,3 = r(1+O(1)/,To-g7), aud r = rj(1+1/logI) = r(1+O(1)!V'1o"7).

Lemma S The relative congestion in any frame of si:c. 12 or grtater ct, ccn steps 0 andf lo I

is at most r4, whcre 12 = logI and r4 = ril . 1/ logl).

Proof: The proof is similar to that of Lemma 4. 0

We have now completed our transformation of schedule S into schedule S+ 1 . Let us review

the relative congestion and frame sizes in the different parts of a block. Between steps 0 and

loe3 1, the relative congestion in any frame of size 12 or greater is at most r4. Between this

region and the fuzzy region, the relative congestion in any frame of size 14 or greater is at most

r2. In the fuzzy region, the relative congestion in any frame of size I or greater is at most r3.

After the fuzzy region, the relative congstion in any frame of size 11 or greater is again r2,

until step 213 +312 - Io r, where the relative congestion in any frame of size 12 or greater is

r4. These bounds are shown in Figure 1-9. For the entire block it is safe to say that the relative

congestion in any frame of size (+1) = log4 for greater is at most r('+I) = r(l +O(I)/VI"7).

0

1.3 On-line algorithms

1.3.1 An O(c-+ dlogN) on-line algorithm

By applying the type of probabilistic analysis used in Section ' ',it is fairly straightforward

to schedule any set of N packets in O(c + dlogN) steps with queues of size O(log N). We

1.3. ON-LINE ALGORITIMS 37

simply delay the start of each packet by a random amount that is chosen uniformly from

(1, ' 1, anti then route all the packets forward in a synchronized fashion. More precisely, we

introduce the initial delays and then consider the unconstrained schedule without regard for

the rule that at moat one packet traverse any edge in a single step. With high probability, no

more than O(log N) packets will want to traverse any edge at any step of the unconstrained

schedule. Hence we can simulate each step of the unconstrained schedule with O(logN) steps

of a legitimate schedule. The final schedule consumes O((d+ ;*) logN) = O(c+ dlogN)

steps to complete the routing and uses queues of size 0(log N).

1.3.2 An 0(c+ d+ logN) on-line algorithm for layered networks

In this section we show how to route N packets whose paths have congestion c on & bounded-

degree layered network with levels 0 through d in O(c + d + log N) steps with high probability

using constant-size queues. A packet can originate at any node in the network, but its desti.

nation must be on a level with a larger number. No bound is placed on the size of the initial

and final queues. The edge queues, however, can each hold at most q packets. The value of q

can be any constant integer (including 1), and will affect the overall routing time by a constant

factor. Each node has has in-degree and out-degree at most A, where A is a fixed constant.

The scheduling algorithm is identical to Ranade's algorithm except that instead of ordering

the packets based on destination address, we order thein according to random ranks. In par.

ticular, each packet is assigned a random rank chosen randomly, independently, and uniformly

from the range (1, w], where w will be specified later. A packet is routed through a node only

after all the othqr packets with lower ranks that muct pass through the node have done so. Ties

in rank are broken according to destination address.

The routing protocol guarantees that the packets in each queue are arranged from head

to tail in order of increasing rank. Before routing begins, the packets in each initial queue

are sorted according to rank. At the tail of each initial queue there is a special end.of.stream

(EOS) packet with the largest possible rank. All queues operate in a first-in first-out (FIFO)

manner. At each step, a node examines the heads of its initial and input edge queues. If any of

these queues are empty, then the node does nothing. Otherwise, it selects the packet with the

smallest rank as a candidate to be transmitted. The candidate is sent forward only if the edge

38 CHAPTER 1. PACKET ROUTING ALGORITIMS

queue that it must enter contains fewer thaut q packets at the btginning of the step. Thus, an

edge queue is guaranteed never to hold more than q packets.

To prevent queues from becoming empty, whenever a node transmits a packet along one

output edge, it sends a ghost packet with the same rank along all of its other output edges.

The rank of the ghost packet provides the node on the next level with a lower bound on the

ranks of the packets that it will receive in the future. Gho4t packets allow a node to transmit

& packet without having to wait for actual packets (if any) of higher rank to arrive on all of its

input edges. Thus, a node starts tr~nsmltting packets as soon as It has received some kind of

packet on each of Its input edges, and at each. step thereafter, It transmits a packet on all of its

output edges until it sends an EOS packet. For simplicity we will assume that the queue size is

at least two, so that once a queue tontains a packet, it does not become empty until the node

transmits an EOS packet. With minor modifications, the analysis can be made to work with

queues of size one.

A ghost never remains at a node for more thau one step and never resides in a queue w(tcept

at the head. At the end of each step, a node first destroys any ghosts that were present in its

edge queues at the beginning of the step, then destroys any ghosts not at the head of a queue.

To prove that the algorithm completes the routing in O(c + d + log N) steps, we use the

same delay path argument as Ranade (81] (which, in turn is quite similar to the ones used by

Aleliunas [3] and Upfal [94]), but we s7-'plify the counting part of the analysis. The simplified

counting has the additional nlce feature that it allows the edge queue size to be as small as one,

which was not possible with Ranade's original analysis.

A delay sequence has four components. The first is % path of length I that begins on level d

at the destination of sone packet. The path may traverse edges in either the forward direction

(i.e., front a level i to a level i + 1) or in the backward direction. If f is the numbc:r of forward

edges traversed on the path, then I < d+2f. The second component is a sequence . ,s,,, of

-not necessarily distinct nodes on the path. The third component is a sequence pi,... ,P, of w

distinct packets such that the path for packet Pi passes through node si. The final component

is a sequence rt,... , rw of ranks such that ri :. r,+,.

Each delay sequence corresponds to a bad event in a 'illity space. The only use of

randomness in the algorithm is in the choice Lf ranks for acts. Thus, the probability

1.3. ON-LINE ALGORITHMS 39

space consists of wN equally likely elementary outcomes, one for each possible setting of the

ranks. A delay sequence corresponds to the event that the rank chosen for packet pi is ri, for

1 < i < w. Each bad event consists of wM-' clementary outcomes and occurs with probability

I/W.

The following lemma is the crux of Ranade's argument.

Lemma 9 (Ranade) For any w, if some packet is not dclivered by step d+ t then a bad event

corresponding to a delay sequence with qf <_ w occurs.

Corollary 10 If no bad cLtnt occurs, then all of the packets are delivered within d + Wo steps.

The theorem below presents our simplified counting argument.

Theorem 11 For any k1, there is a k2 such that the probability that any packet is not delivred

by step d + to, where w = k2(d + c + log N), is at most 1IN"'.

Proof: To bound the probability that some packet is delayed to steps, we need only bound the

probability that some bad event occurs. This probability is at most

N(2A) (t+w) (c)' (2w)
tow

The numerator is an upper bound on the number of different delay sequences, each correspond-

ing to a bad event. There are at most N places that the path can start,, at most (2A)I ways

that it can continue, at most ('t') ways of selecting the nodes s1 ,... ,s on the path, at most

(Ac)" ways to pick the packets pi,... ,Pw that pass through i,... ,s, and at most (.) ways

to choose the ranks rl,...,rw. Since the ranks are chosen from [1,w], the probability that

a bad event occurs is 1/ww. Using the inequality 1 < d + 2f :_ d + 2ul/q, we see that for

to fl(d + c + log N), this probability can be made arbitrarily small, even if q = 2. 0

For simplicity, we have heretofore ignored the possibility of combining multiple packets

with the same destination. In many routing applications, there is a simple rule that allows

two packets with the same destination to be combined to form a single packet, should they

meet at a node. For example, one of the packets may be discarded, or the data carried by the

two packets may be added to together. Combining is used in the emulation of concurrent-read

concurrent-write parallel random-access machines [81] and distributed random-access machines.

.10 CHAP'TER 1. PACKET ROUTING ALGORITHMS

If the congestion is to remain a lower bound when combining is allowed, then its definition

must be modified slightly. The congestion of an edge is the number of different destinations for

which at least one packet's path uses the edge. Thus, several packets with the same destination

contribute at most one to the congestion of an edge.

If packet with the same destination are to be efficiently combined by the algorithm, then

they must be given the same rank. For this purpose, a random hash function is used to

generate ranks based on destination. Since ties in rank are broken according to destination, a

node won't send a packet in one of its input queues unless it is sure that no other packet for

the same destination will arrive later in the other queue. Thus, at most one packet for each

destination traverses an edge.

For the counting argument to work, the ranks assigned by the hash function to any set of

w packets must be independent. The universal huh function [171

rank(z) =(iz) mod mod W

maps a destination z E [0,P - 1] to a rank in (0,to - 1] with w.way independence. Here P is

a prime number and the coefficients ai E Zp are chosen at random. T he random coefficients

use O(wlogP) random bits. In fact, it suffices to choose ranks in the range [0,1ogN - 1] such

that any set of log N are independent [63, 82]. In most applications, the number of posaible

different destinations is at most polynomial in N, so the hash function requires only O(log2 N)

bits of randomness.

1.3.3 Applications

In Sections 1.4 through 1.9 we exanine the many applications of' the o(c + d + log N)-step

scheduling algorithm for layered networks. These applications include routing algorithms for

meshes, butterflies, multidimensional arrays and hypercubes, the shuffle-exchange graph, and

fat-trees. Section 1.4 presents the simplest application: routing N packets in O(VNF') steps on

a V" X VY mesh. Another simple application, described in Section 1.5, is an algorithm for

routing N packets in O(logN) steps on an N-node butterfly. The mesh and butterfly results

were previously known [82, 81], but are included for completeness. Next, Section 1.6 presents

an algorithm fo- routing N packets on an N-node k-dimensional array with maximum side

1.4. RO U7ING ON M\WSIE S 41

length ail in O(kW) steps.

It is not obvious that the scheduling algorithm can be applied to the shuffle-exchange graph

because it is not layered. Nevertheless, in Section 1.7 we show how to route N-packets in

O(logN) steps on an N-node shuflle.exchange graph by identifying a layered structure in a

large portion of the graph. In Section 1.8, we show how to adapt the scheduling algorithm

to route a set of messages with load Iactor A in O(A + log Al) steps on fat-tree [561 with root

capacity AL. The fat-tree routing algorithin leads to the construction of an N-node network

with area O(N) that. can simulate any other network of area O(N) with slowdown O(log N).

Finally, in Section 1.9 the scheduling algorithm is used as a subroutine in an O(logN)-step

sorting algorithm for the butterfly.

1.4 Routing on meshes

A 5 x 5 mesh is illustrated in Figure 1-10. Each node has a distinct label (x,y), where X is its

column and y is its row. In an a x a mesh, 0 _5 z, y :< n - 1. Thus, an n x n mesh has N = n

nodes. For z < n - 1, node (z,y) is connected to (z + 1,y), and for y < n - 1, node (Z,y)

is connected to (z,1 + 1). Sometimes wraparound edges are included, so that a node labeled

(x,n - 1) is connected to (z,0) and a node labeled (a - 1,y) is connected to (0,y).

It is straightforward to apply the algorithm described in Section 1.3 to route N packets on

a I x O mesh in 0(vr'h") steps. The algorithm consists of four phases. In the first phase

only those packets that need to route ip and to the right are sent. The paths of the packets

are celected greedily with each packet first traveling to the correct row, and then to the correct

column. The level of a packet is the sum of its row and column numbers. This simple strategy

guarantees that both the congestion and dilation of the phase are 0(vW/-'). The up-right phase

is followed by up-left, down-right, and down-left phases. This a.lgorithm was first discovered

by Ranade [82]. Although O(VV')-step routing algorithms for the mesh were known before

[41, 43, 97), they all have more complicated path selection strategies.

412 CHAPTER L PACKET ROUTIN~G ALGORITHMS

4

3

row 2

0

0 1 2 3 4

column
Figure 1-10: A 5 x 5 mesh.

1.5 Routing on butterflies

An 8-input builerfly network is illustrated in Figure 1-11, Each node has a distinct label (I, r),

where I is its level, and r is its row. lit an n-input butterfly, the level is an integer between

0 and lgn, and the row is a Ign-bit binary number. The nodes on level 0 and lgn ame called

the inputs and outputs, respectively. Thus, an 7-input butterfly has N = n(lgn + 1) nodes.

F or I < lg i, a itadq labeled (1, r) is connected to nodes (1 + 1, r) and (I + 1, r(')), where d()

denotes r with the 1th bit complemented. Sometimes the input and output nodes in each row

are identified as the same node. lit this case the number of nodes is N =nign. The butterfly

has several nattural recursive dlecomnpositions. For example, removing the nodes on level 0 (or

lgYL) and their incident edges leaves two n/2.input subbuttterflies.

An important related network called the Boenes network (10] is shown in Figure 1-12. An

ii-input Boecs network has 2 log i + I levels and contains 2 n-input butterflies as edge-disjoint

subgraphs. The two butterflies share nodes only on level log n. The first butterfly has its inputs

on level 0 of the Boenes network, and its outputs on level log n. The second is the mirror image

of the first. It has its inputs on level 2 log i + 1, and its outputs on level logni. An n-input

1.5. ROUTING ON BUTTERFLIES 43

level

0 1 2 3

000
001
010011

row
100
101110

Figure 1-11: An 8-input butterfly network. Each node has a level number between 0 and 3,
and a 3-bit row number. A node on level I In row r is connected to the nodes on level I + I in
rows r and rd), where where r0) denotes r with the lth bit complemented.

butterfly can emulate an n-input Benes network with constant slowdown. Waksman [98) proved

that the inputs and outputs of a Benes network can be connected in any permutation by a set

of node.disjoint paths.

Ranade [81) showed that the scheduling algorithm for layered networks can be applied to an

N-node butterfly to route N packets in O(logN).steps using constant size queues. Routing is

performed on a logical network consisting of 4)g n + 1 levels. The first Ig n levels of the logical

network are linear arrays. The packets originate in these arrays, one to a node. Levels Ign

through 31g n form a Benes network. The last lg n levels are again linear arrays. Each packet

has its destination in one or these arrays. Packets with the same destination are combined.

The butterfly simulates each step of this network in a constant number of steps. Paths for the

packets are selected using Valiant's paradigm; each packet travels to a random intermediate

destination on level 21g n before moving on to its final destination. This strategy ensures that

with high probability the congestion is O(log N), so that the total time is O(log N).

44 CHIAPTER 1. PACKET ROUTING ALGORITHMS

level

0 1 2 3 4 5 6

000
001
010011 4 r-.--

row il
100

101
110

Figure 1-12: An 8.input Benes network consists of two back.to-back 8-input butterfly networks.

1.6 Routing on multidimensional arrays

In this section we describe a randomized algorithm for routing kN packets on an N-node k.

dimensional array in O(kAl) steps using constant-size queues, where At is the maximum of the

side lengths All,..., Alk. Special cases include the mesh (k = 2) and the hypercube (M = 2).

For arrays of dimension greater than two, no asymptotically-optimal constant-queue-size routing

algorithms were previously known.

A k-dimensional array with side lengths M _ 2, for 1 _< i < k, has N = Mi ... Mk nodes

and kN edges. Each node has a distinct label (wI,.. .,wk), where 0 :5 w, _5 Ai - 1, for

1 _5 i <_ k. A node has one outgoing and one incoming edge for each dimension; for 1 :5 i < k,

(w1, ... ,Wk) has an edge to (iul,..., wt + 1 mod Ali,... ,wi). We assume that at each step,

a node may simultaneously transmit a packet on each of its k outgoing edges, and receive a

packet on each of its k incoming edges.

In order to apply the scheduling algorithm from Section 1.3, routing is performed on a

bounded-degree layered logical network that the array emulates. The logical network consists of

(2k+1) plateaus labeled 0 through 2k, each consisting of N logical nodes. Each node in : plateau

has a label (wh .. . ,tWk) distinct from the labels of the other nodes in the plateau. We begin by

1.6. ROUTING ON MULTIDIMENSIONAL ARRAYS 45

describing the edges in plateaus 0 through k. A node on plateau i has edges only in dimensions

i and i+ 1. If i > 0 and w, < M- 1, then the node labeled (w,..., wk) has an edge to the node

in the same plateau with label (wl,... ,w, + 1,... ,Wk). Also, if i < k and wi+1 < Ai+, - 1

then the node has an edge to (wi,... ,i i+1 + ,wk). The only connections to plateau i + I

come from nodes with w,+, = At - I. For i < k, (wt,... , WiA+ 1 - Iw+,.. ,wk) on plateau

i is connected to (wz,... iwt O, wi+2,..., wk) on plateau i+ I. Plateau k is connected to plateau

k + I by dimension I edges. Plateaus k + I through 2k are essentially a copy of plateaus I

through k. The edges on plateau k + i, I : i :_ k are given by the same rules as the edge on on

plateau i. The level of node (10.... , w) in plateau i, 0 < i _. k, is ,-='. w + Ej'I Atj. For

k . < 2k, the level is £ u + £ji, Mj + MAl. The network is layered because jach

edge connects a pair of nodes on adjacent levels.

Each step of the logical network can be emulated by the array in a constant number of steps.

The array node labeled (Wi, ... , wk) emulates all of the logical nodes with the same label, one

for each of the 2k + I plateaus. The array edge from (wI,...,.Wit..., Wk) to (w,...,wi +

1 mod M...,wk) emulates at most four logical edges, one each on plateaus i - i, it k + i - I

and k + i.

Paths for the packets are selected using Valiant's paradigm. Initially each node on plateau

0 holds k packets in an initial queue. A packet travels from its origin on plateau 0 to a random

destin&,tion on plateau k, then continues on to its true destination on plateau 2k. Suppose

that a packet originating at (z 1 ,...,xk) on plateau 0 is to pass through (rl,... ,rk) on plateau

k on its way to (l.,... ,yk) on plateau 2k. In the first half of the path plateau i is used

to make the ith component of the packet's location match the ith component of its random

destination. The packet enters plateau i > I at node (ri, ..., ri-, 0, iz+1,..., zk,) and traverses

dimension i edges to (ri,... , ri, x, ... ,zk). The packet then traverses dimension i + 1 edges

to (ri,...,rM9+X - xi+2,...,Xk) and crosses over to node (ri,.. .,ri,0,Xi+2,..., Xk) on

plateau i + 1. In the second half of the path, plateau k + i is used to make the ith component

of the packet's location match the itlh component of the true destination in a similar fashion.

The following lemma shows that with high probability, the congestion of the paths is at most

O(Wk).

Lemma 12 For any k,, there is a k2 such that the probability that c > k2kM is at most 1/Nkl.

46 CHAPTER 1. PACKET ROUTING ALGORITHMS

Proof: For simplicity we analyze congestion in the first half of the network only. The calculation

for the second half is identical.

We begin by bounding the probability that a particular edge is congested. There are two

parts to the calculation: counting the number of packets that can possibly use the edge, and

bounding the probability that an individual packet actually does so. First, we count packets

that can use the edge. Consider an edge on plateau i from (wt,...,w&) to (....,wi +

1 mod A%;,... ,to,). Since a packet does not use any dimension i + 1 through k edges before

it uses a dimension i edge, any packet that uses the edge must come from an origin whose

last k - i component,. zi+l through xk match wi+I through wk. There are at most M ... M

such origins, each transmitting k packets. Next we bound the probability that each of these

packets actually uses the edge. A packet uses the edge only if components rl through ri- of

its random destination match w, through wi-. The probabi}ity that these components match

is lAti ... M-z.

Since the random destinations are chosen independently, the iumbir of packets, S, that paus

through the edge has a binomial distribution. The probability that more than k2kM packets

use an edge is at most
Pr[S> krakAlj M, k ... (1 .k 2kM

k2kAI k ... MA..1)

Using the inequalities Ali _< At for 1 :5 i _ k, and (") <) e have Pr[S > k2kM] <_

To bound the probability that any edge is congested, we simply sum the probabilities that

each particular edge is congested, i.e.,

Pric > k2k.] 4kN (2 .

For any kI, there is a k2 such that this probability is at most l/Nki . 0'

Theorem 13 For any kL, there is a k2 such that the probability that any packet is rno delivered

by step k2kM is at most lINs.

Proof: With high probability, the scheduling algorithm from Section 1.3 delivers all packets in

O(c+d+logN) steps. The number of levels is O(kM), and by Lemma 12 with high probability

the congestion is O(kM). Also, log <kM. 0"

1.7. ROUTING ON SH UFFLE-EXCIIANGF GRAPHS 17

010 ---- 0il

---001 110 --

100 ---- 101

Figure 1-13: An 8-node shuMe-exchange graph. ShuMe edges are solid, exchange edges dashed.

1.7 Routing on shuffle-exchange graphs

lit this section, we present a randomized algorithm for routing any permutation of N packets on

an N-node shuffle-exchange graph in O(log N) steps using constant-size queues. The previous

O(log N)-tine algorithms (31 required queues of size fllcg N).

Figure 1-13 shows an 8-node shuffle-exchange graph. Each node is labeled with a unique

IgN-bit binary string. A node labeled a = a1N-l ... ao is linked to a node labeled b =

blN-1 ... bo by a shuBle edge if rotating a one position to the left or right yields b, i.e., if

either b = aoalgN-jajN-2 .. al or b = alSN_2alIgN3...aoaIN_1. Two nodes labeled a and

6 are linked by an exchange edge if a and b differ in only the least significant (rightmost) bit,

i.e., b = ajv.-l-..aawo. In the figure, the shuffle edges are solid, and the exchange edges are

dashed.

The removal of the exchange edges partitions the graph into a set of connected components

called necklaces. Each necklace is a ring of nodes connected by shuffle edges. If two nodes lie

or the same necklace, then thoir labels are rotations of each other. Due to cyclic symmetry,

the number of nodes in the necklaces differ. For example, in a 64-node shuffle-exchange graph,

the nodes 010101 and 101010 form a 2 ,ode necklace, while 011011, 110110, and 101101 form

a 3-node necklace. For each rccklace, the node with the lexicographically minimum label is

chosen to be the necklace's repcrsentativc.

4 CHAPTER 1. PACKET ROUTING ALGORITHMS

1.7.1 Good and bad nodcs

Unlike the mesh and butterfly networks, the shufile-exclango graph cannot emulate a layered

network in a transparent fashion. Nevertheless, it is still possible to apply the O(c+ d+ log N)

scheduling algorithm for layered networks to the problem of routing on the shuffle-exchange

graph. Tite key idea is that a large subset of the shuffle-exchange graph (at least NI/5 nodes)

can emulate a layered network. We call these nodes good nodes. The rest of the nodes are bad.

A node can be classified as bad for one of three reasons: (1) its label does not contain a

substring of lglgN consecutive O's (we consider the rightmost and leftmost bts in a label to

be consecutive), (2) its label contains at least two disjoi-it longest substri.gs of at least lglgN

consecutive 0's, or (3) its label is 0..- 0. Thus, the label of every good node contains a unique

longest substring of 0s with length at least lglgN. For simplicity, we assume that IglgN is

integral, and that lEN\ > lglgIV.

Since the length of a substring of consecutive O's in a label is not changed by rotation, a

necklace consists either entirely of good nodes oc entirely of bad nodtes. Furthermore, each

good necklace consists of)g N good nodes since a unique longcst substring of consecwitive O's

precludes cyclic symmetry.

In order to route packets between all N nodes of the shuffle-exchange graph, we associate

the bad nodes with good nodes. A type-1 bad node is associated with a good node by changing

the least significant bit of its label to a. 1 and the lglgN most significant bits to 0's. Each bad

necklace of type 2 is associated with a good necklace by ihanging the two bits following the

leading group of O's in its representative's label to 01. Finally, the node 0... 0 is associated

with its neighbor 0-.. 01.

Lemma 14 At most 41gN bad nodes are associated with any good nccklace.

Proof: Each type-1 bad node is associated with the representative of a good necklace since,

after the transformation, the longest string of consecutive O's begins with the most significant

bit. Only bad nodes whose labels diffkr front the representative's label in at most Ig Ig N + 1

bits are associated with it, so at most 2191sN + 1 = 2lgN type-I bad nodes are associated with

any good necklace.

To assess the number of type-2 bad nodes associated with a good necklace, we consider

1.7. ROUTING ON SIIUFFLF4-XCIIANGE GRAPHS $t9

the label of the representative of the good necklace and notice that only a bad necklace whose

representative's label lifters in the last bit of its leading block of O's and possibly the bit after

that can be mapped to the good necklace. Thus, at most two type.2 bad necklaces are associated

with any good necklace.

Finally, no bad nodes of either type 1 or 2 are associated with the necklace of node 0 ... 01.

0

Corollary 15 At least N/S of the nodes are good.

Proof: By Lemma 14 at most .1 Ig N bad nodes are associated with any good necklace. Since

every good necklace contains exactly Ig N nodes, at least N/ of the nodes are good. 0

The remainder of this section provides the details of the routing algorithm. We begin by

describing a logical layered network that the good nodes can easily emulate with constant over.

head. Next, we show that, for any routing problem, choosing random intermediate destinations

yields paths with congestion an illm ation O(log N) in this network, with high probability. Thus,

by applying the analysis of Section 1.3, routing on the logical network takes O(log N) steps, with

high probability, and uses constant.sized queues. We conclude by describing the deterministic

routing between good and bad nodes.

1.7.2 A layered networ'k

The level of a node is detern,icnd by the distance to the representative node in its necklace. An

alternate way to write a node's kibel is to placea ine under its least significant bit (which we

call the current bit), and then rotate it until it matches Its representative's label. For example,

110001 can also be written 000111. The level of a node is the position of the current bit,

counting from the left. For example, 000111 lies on level 3. (Note that the representative node

lies on level lgN - 1.)

The problem with this leveling scheme is that although it induces a leveling of the shift

edges, it does not necessarily induce a leveling of the exchange edges. An exchange edge may

create a new longest substring of O's by appending two substrings separated by a single 1, and

thus connect two levels vhich are very far apart.

CIIAPTER . PACKET ROUTING ALGORITM$S

To overcome this difficulty, we replace the exchange edges with flip edges. A flip edge links

nodes labeled a and b if both are good, a = a * no, b = ahgv-_ ..- -rSjl.... do, and aj

is not in the longest block of 0's of a. tote that a flip edge extends a group of 0's by at most

one. Thus no flip edge can create a new leading group of O's, becaust if it grew a shorter group

to be as big as the leading group, theii it would lead to a bad node of type 2, a contradiction

since flip edges occur only betweent good nodes by definition. Thus flip edges are leveled. The

operation of the flip edges can be emotled by the shuffle.exchange graph with only a constant

factor of slowdown; each flilp edge Is composed of an exchange edge, a shume edge, and possibly

another exchange edge.

We denote by A the network composed of the good nodes, the shuffle edges (excluding the

shuffle edges from level lg N - 1 to 0), and the flip edges. Note that in network A, from any

level 0 node we can reach any necklace with a longest string of O's having the same or greater

length by correcting bits starting from the end of the leading block of O's.

it fact, we wish to be able to get from the level 0 node of necklace to aiy other necklace.

Thus we append a mirror image A to itself so that we can reach necklaces with fewer 01s. The

leveling is extended in the natural manner. We call this whole thing network AA', and note

that network A can easily emulate it.

We denote by L the network consisting of the shuffle edges on the good nodes again excluding

shuffle edges from level lgN - 1 to level 0. Our method of path selection consists of routing

from a good node to its level 0 node, then routing to a random intermediate necklace, then

routing to the destination necklace, and finally routing to the appropriate good node. Thus,

we route in a layered network composed of network L, network A,, another network AA',

followed by network L. We extend the leveling in the natural manner and note that network A

can easily emulate the whole thing.

1.7.3 Path selection and congestion

For each packet we choose its path by uniformly choosing a random good necklace to route

through before going to its final destination. So the path for a packet consists of a path
through L to node 0 of its necklace, the path throngh AA" to its random intermediate necklace,

the path through the second AAr to its destination necklace, and a path through the second L

1.7. ROUTING ON Sit UFLE-EXCiANGE GRAI'ItS 1

to the proper node of the necklace.

The following lenima shows that if at most O(Iog N) packets originate and terminate in each

good necklace, then this method yields paths with congestion O(log N) with high probability.

Lemma 16 Suppose that each good necklace sends and receives at most blg N packets, where

& is a fired constant. Then for anyj coristant k1, there is a constant k2 such that the probability

that more than k2 Ig N packets use any edge is at most 1/NAI.

Proof: We observe that for the paths in the copies of L, we have congestion big N, since at

most big N packets start or end in any good necklace. Dy symmetry we claim that the analysis

of the path portions in both copies of AAr is the same. Finally we recall that in AA', we route

packets going to necklaces with same or more 0's to the appropriate necklace in network A

and straight across network A', and we route the other packets straight across in network A

and use A" to route to the proper necklace. We will show that any destination necklace gets

O(log n) packets with high probability, so the straight across pottion of the paths should not

be a problem. To finish, we give the analysis of the congestion due to packets in just network

A, and claim that the arguments will hold by symmetry for AA r .

Consider an edge in the first copy of network A. In this half, packets going to necklaces with

fewer leading 0's are routed straight across A. There are at most blgN of these, so without

loss of generality we ignore them. Suppose that e traverses levels m and m + 1. Let z be

the number of O's in the necklace to which e goes. If in < x, then no packet from any other

necklace uses e, since we only map to a necklace via flip edges after its longest string of O's.

Otherwise, we consider the number of packets from other necklaces that can use e. We know

that only packets from at most 21 othe.r necklaces with I = m - lgigN could have used e since

at most I bits could have changed by level in + 1. Titus the number of packets that can use

c is at most b .21ign since each necklace starts with at most blgN packets. The probability

that a specific packet uses e, is the number of necklaces that can be reached using e, at most

215N-Ig9gN-1 (i.e., necklaces which match c's necklace in the first I + lg lg N bits), divided by

the total number of good necklaces, at least N/5 lN, which is just 5/21.

The prcability that more than k2 lgN packets use a is at most

(b 21 Ig N k2!9'L.21Ig N 21(i

52 ChIAPTER J. PACKET ROUTING ALGORITHMS

since there are b.21 Ig N Bernoulli trials, each succeeding with probability 5/2'. The probability

that any of the O(N) edges of this stage has congestion more than k2 Ig N is O(N) times this

probablity. For any k1, we can hound the product by 1/NA0 by choosing k2 large enough. 0

Becauft the congestion and number of levels are O(log N), with high probability, the time

to route the packets between the good nodes is also 0(log N), with high probability, and the

queue size is constant.

1.7.4 Packets from bad nodes

In this section we show how to deterministically route the packets from the bad nodes to their

associated good necklaces.

Lemma 17 Packet, fromn bad nodes are routed to the associated good necklaces deterministically

in O(log N) time using constanti-i:c queues.

Proof: Recall that we associate a bad node of type 1 with the necklace represented by a I in

the least significant or current bit plus lglgN O's in the most significant bits. We route these

packets in the shuffle exchange graph by flipping the current bit to a I and flipping lglgN bits

to the right to 0's. Titus we map a bad node to a good necklace at its level Ig Ig N node.

For any necklace, we have a binary tree, the leaves of which are mapped to the necklace.

Each lev-J of the tree corresponds to one of the lglgN + 1 bits that were flipped. Therefore,

we can route packets from the binary tree leaves to the necklace, and distribute them along

the necklace deterministically. This is easily done in O(log N) time with constant queues. The

routing from the necklace to the tree is equally trivial. But, we need to ensure that traffic from

the separate binary trees does not interfere too much. This is easy since any bad node is in

at most two binary trees; in at most one as a leaf since any node is mapped to exactly one

good node, and in at most one as an internal node since the number of 0's between the current

node and the closest 1 to the left determines a unique level and the rest of the bits determine

a unique tree.

To finish, we consider bad nodes of type 2. These are nodes without a unique longest string

of O's. IHere we extend one of the groups of O's by one 0, making sure not to join two groups of

O's by inserting a 1, mimicking the flip operation. For any good necklace whose representative

1.8. CONSTRUCTION OF AREA AND 1'OLUAIUNIVERSAL NETWORKS 53

is OkI.,. only the necklaces represented by 0'10... and 0"& 11... can he mapped to it. Again,

at most two bad necklaces are associated with any good " cklace.

For each packet in such ;L bad necklace we route it through 2he node connecting it to the

appropriate good necklace. We perform this movement by pipelining the packets through the

edge which connects the two necklaces. We see that this mapping maps at most one packet

from the bad necklace to a node ill the good necklace. Since we are basically routing on linear

arrays of length at most 2lg X, 21g A steps suffice to route the packets appropriately. Thus,

4 Ig N steps are sufficient to route the packets from two bad necklaces.

This finishes the description of the maps to and from all the bad nodes except for node

0 ... 0, which is adjacent to node 0,...01. -

1.7.5 Summary

The main result of this section is summarized in the following theorem.

Theorem 18 With high probability, an N-node shuffle-exchange graph can route any pcru-

tation of JN packets in O(log NV) steps using constant.si:c queues.

Proof: There are three phases to the algorithm. First, packets originating at bad nodes are

deterministically routed to the good nodes with which they are associated. By Lemma 17 this

phase requires O(log N) steps. Next, packets are routed between the good nodes on the logical

network. Since at most .1 Ig N bad nodes are associated with each good necklace, with high

probability the congestion of the paths on the logical network is 0(log N), Lemma 16. Titus,

this phase requires O(log N) steps, with high probability. The packets are routed in 0(log N)

steps using the scheduling algorithm from Section 1.3. Finally, packets destined for bad nodes

are deterministically routed froin the good nodes to bad. By an analysis similar to that of

Lemma 17, this phase also requires 0(logN) steps. 0

1.8 Construction of area and volume-universal networks

In this section we construct a class of point-to-point networks that are area-universal in the sense

that a network in the class with N processors has area 0(N) and can, with high probability,

5.4 CIIAIPTER 1. PACKET ROUTING ALGORITHMS

simulate in O(Iog N) steps each message-step of any sha .d-bus network of area O(N). The

simulation is optimal because a point-to-point network may require fl(log N) steps to simulate

one step of a shared-bus network. The networks are based on the fat-trees of Greenberg and

Leisrson [29] and the simulation uses the message routing algorithm from Section 3.

In a fixed-connection network, processors communicate via wires. Each processo has a

bounded number of read and write pins. In a point-to-point fixed-connection network, each

wire connects one read pin with one write pin. In each message.step, the processor with the

write pin may transmit a message of O(logN) bits to the processor with the read pin. In a

shared-bus fixed.connection network, a. wire may connect many read and write pins. Such a

wire is called a bus. In each message-step, any processors wishing to send messages make them

available on their write pins. Then the messages at the write pins of each wire are combined by

some simple rule to form a single message Combining is assumed to require a single message-

step, regardless of the number of messages combined or the rule used:

Leiserson was the first to display 3L class of fixed-connection networks that could efficiently

simulate any other network of the samie area or volume. In [56] he showed that a fat-tree of area

O(N) can simulate in O(loge N) bit-steps each bit-step of any point-to-point fixed-connection

network of area O(N). The simulation used an off-line routing algorithm for fat-trees. On-line

routing algorithms were later developed by Greenberg and Leiserson [29] and Park [73]. None

of these routing algorithms are capable of combining messagLs to the same destination. As a

consequence, no scheme for simulating shared-bus networks was known until now. A network

that can simulate in O(1) steps each step of any shared-bus network area of equal area was

presented in [69]. [owever, the connections in this network are not fixed, but instead processors

communicate via reconfigurable busses.

A fat-tree network is shown in Figure 1-14. Its underlying structure is a complete 4-ary

tree. Each edge in the 4-ary tree corresponds to a pair of oppositely directed groups of wires

called channels. The channel directed from the leaves to the root is called an up channel; the

other is called a down channel. The capacity of a channel c, cap(c), is the number of wires in

the channel. We call the tree "fat" because the capacities of the channels grow by a factor of 2

at every level. A fat-tree of height m .. ;s A.12 = 22m leaves and Af 2m vertices at the root.

It will prove useful to label the switches at the top and bottom of each channel. Let the

1.8, CONSTRUCTION OF AREA AND VOL UMF UNIVERSAL NETWORKS 55

m,,2

Figure 1-14: A fat-tree.

level of a switch be its distance from the leaves, Suppose a channel c connects cap(c)/2 = 21

switches at level I with cap(c) - 21+1 switches at level I + 1. Give the switches at level I labels

0 through 2' - 1 and the switches at level I + 1 labels 0 through 21+1 - 1. Then switch k at level

I is connected to switches k and k + 21 at level I + 1. The following lemma relates the labels of

the switches on a message's path from a leaf to the root.

Lemma 19 There is a unique shortest path from any leaf to a suJitch labeled k at the root, for

0 :_ k _ At - 1, and that path passes through a switch labelcd k mod 21 at level 1, for 0 _ 1 _ rn.

For a set Q of messages to be delivered between tle leaves of the fat-tree, we define the load

of Q on a channel c, load(Q,c), to be the number of destinations of messages in Q for which

at least one message must pass through c. Note that even if many messages with the same

destination must pass through a channel, that destination contributes at most one to the load

of the channel. We define the load factor of Q on c, A(Q, c), to be the ratio of tile load of Q on

c to the capacity of c, A(Q, c) = load(Q, c)/cap(c). The load factor on the entire network, A(Q)

is simply the maximum load factor on any channel A(Q) = max, A(Q,c). The load factor is a,

lower bound on the the number of steps required to deliver Q. We shall assume that A _5 Mk,

where k is some fixed constant. We shall sometimes write A to denote A(Q) when the set of

messages to be delivered is clear from the context.

In a layered fat-tree a switch at the top of an up channel at level 1 is connected to itself

at the top of the corresponding down channel by a linear chain of switches of length 2(m - 1).

A message may only make a transition from an up channel to a down channel by traversing a

chain. Thus all shortest paths between leaves in a layered fat-tree have length 2m. Note that

56 CHAPTER 1. PACKET ROUTING ALGORITHMS

th load of a set of messagels on a channel of the layered fat.tree is identical to the load on the

corresponding channel in the fat-tree.

The path that a message for destination 2 in column 2nt takes through a layered fat-tree i\

determined by the rntuniversal hash fuuction {11J

5)ath(z) Za mod Imod At,

where P is a prinarj number larger than the number of possible different destinations, and the

ai e Zp are chosen .t random off-line. A inessage with destination x follows up channels until

it can reach x without using any more up channels. It then crosses over to a down channel via

a chain, and follows down ch'nnels to x. Note that a message only passes through a channel

if it must. Also, all messages with destination x that pass through channel c pass through

switch (path(z) mod cap(c)) at the top of c and through switch (path(z) mod (cap(c)/2))'at

the bottom of c.

The following lemma shows that we can use the scheduling algorithm from Section 3 to

route messages in a. fat-tree.

Lemma 20 For any constant cl, there is a constant c2 such that the probability that the number

of steps rcquirtd to deliver a set Q of N messages with load factor X is more than C2 (A + log M)

is at most I/A1/e, provided that N is polynomial in M.

Proof: The paths of the messages are first randomized using the universal hash function path.

With high probability, the resulting congestion is c = 0(). + log Al). Each message travels a

distance of d 2m = 2 log Al. The messages are then scheduled using the algorithm from

Section 3.

Let us now consider the VLSI area requirements (93) of fat-trees. A fat-tree with root

capacity M and O(M2) processors has a layout with area O(Ml 2 f M) that is obtained by

embedding the fat-tree in the tree of meshes4,]. The nodes of the tree of meshes in this layout

are separated by a distance of lgM in both the horizontal and vertical directions. Thus, the

O(logM) space for the chain associated with each processor in the layered fat-tree can be

allocated without increasing the asymptotic area, of the layout. (In fact, it is possible to attach

a chain of size O(log2 M) to each fat-tree node without increasing the area by more than a

1.8. CONSTRUCTION OF AIWtA AND VOLUME-UNIVERSAL NETWORKS 57

constant factor.) The leaves of the fat-tree are separated in the layout from each other by a

distance of Ig M in each direction. We can improve the density of processors without increasing

the asymptotic area of the layout by connecting a Ig Al x Ig At mesh of processors to each leaf.

The resulting network has O(A1 2 log2 M) processors and area O(M 2 log2 At). The N-processor

network in this class has root capacity 0(v'ff/log N), O(N/I log2 N) lexves, and area O(N).

The following theorem shows that this class of networks is area-universal.

Theorem 21 With high probability, an N-protesoor point-to-point fired-connection netwe.rk

U of area 0(N) can simulate in O(log N) *teps each step of any shared-bus fired-connetion

network B of area O(N).

Proof: The processors of the shared-bus network B are mapped to the processors of the area-

universal network U ofi.dine using a recursive decomposition technique as in [56]. In each step,

a wire of B is simulated by routing messages between the processors that it connects. At each

level of the recursion at most 0(cap(c) log N) wires connect the processors mapped below a

channel c with the rest of the network. This property of the mapping ensures that the load

factor of each set of messages used in the simulation of B is at most 0(log N). At the bottom

of the decomposition tree, a O(log N) x O(log N) region of the layout of B is mapped to each

leaf ot the fat-tree. The O(log N) x O(log N) mesh connected to the leaf in U simulates this

region of B using standard mesh routing algorithms. 0

The study of fat-tree routing algorithms that perform combining was motivated in part

by an abstraction of the volume and area-universal networks called the distributed random-

access machi ' (DIRM). A host of conservative algorithms for tree and graph problems for the

exclusive-read exclusive-write (EREV) DRAM are presented in [58]. Recently we discovered

conservative concurrent-read concurrent-write (CRCW) algorithms that require fewer steps

for snme of these problems. Until now, however, no efficient fat-tree routing algorithms that

perform combining were known. The 0(A + log N) step routing algorithm presented here fills

the void.

Only slight modifications to the area-universal fat-tree are necessary to make it volume

universal[29]. The underlying structure of the volume-universal fat-tree is a complete 8-ary

tree. Instead of doubling at each level, the channel capacities increase by a factor of 4. The

1 CHAPTER 1. PACKET ROUTING ALGORITH1MS

tree has in levels, root capacity Al = 22" , and .4131 = 23m Ialves. The switches at the top of

a channel at level I are labeled 0 through 41 - 1. Switch k at level I is connected to switches k,

k + 41, k + 2.41, and k + 3 .4 t at level I + 1. A layout with volume O(M 3 / 2 log3/ 2 Al) for the

fat-tree can be obtained by embedding it in the three.dimensional tree of meshes. As before,

a chain of size O(log3/ 2 At) can be attached to each node of the fat-tree without increasing

the asymptotic layou: area and the density of processors can be improved by connecting a

lg"12 Al X lgl/ 2 At x lgl/2 Al mesh, to each leaf.

1.9 Sorting on butterflies

li this section we present a randomized algorithm for sorting N Ig N packets on an N Ig N-node

butterfly network in O(log N) steps using constant-size queues. The algorithm is based on the

Flashoort algorithm of Reif and Valiant [841. The main diffErence is that we use the algorithm

for scheduling packets on layered networks in place of their scheduling lgorithm, which requires

queues of size O(log N). A similar approach has been suggested previously by Pippenger [76],

and Reif (83].

1.9.1 The algorithm

The basic outline of the algorithm is the same as that of Flashsort. The first step is to randomly

select a small set of splitters from among the packets that are to be sorted. Next the splitters

are sorted deterministically. The splitters partition the packets into inicrvals. The ith interval

consists of those packets whose keys are larger than the key of the (i - L)st largest splitter, and

smaller than the key of the ith largest splitter. (We 3ssume without loss of generality that all

of the keys are distinct.) Using the splitters as guides, each interval of packets is routed to a

different subbutterfly, where it is sorted recursively.

We begin by describing a recursive algorithiji for sorting N/ lg' N packets in O(log N) time

on an N Ig N-node butterfly, where ca is some fixed constant larger than one. The butterfly is

"lightly loaded" by this factor of lg*+l N to ensure that, with high probability, at the lower

levels of the recursion the number of packets to be sorted by each subbutterfly does not exceed

the number of" inputs to that subbutterfly. When the algorithm is invoked, each packet must

1.9. SORTING ON BUTTERFLIES 59

1. Count the number of packets entering the butterfly. Let the number of packets be denoted
by n.

2. Randomly and indepenLdently, make each packet a candidate with probability %'A'I/n.

3. Sort the candidates deterministically.

4. Select every Ig Nth candidate to be a splitter.

5. Distribute the splitters for splitter-directed routing.

6. Route each packet to a random row of the butterfly.

7. Route each Interval a subbutterfly via splitter.directed routing.

8. Distribute the packets in each interval to distinct inputs of the corresponding subbutter-
flies.

9. Sort the intervals recursively.

Figure 1-15: The steps performed by an Al-input butterfly in the recursive algorithm for sorting
NIlg 0 N packets in O(log N) time on an N Ig N-node butterfly uting constant-size queues.

reside at a distinct input. As we shall see, this algorithm can be combined with Leighton's

Columrrnort algorithm [47] to sort all N Ig N packets in O(log N) time.

The steps taken by a butterfly with Al inputs are presented in some detail in Figure 1-15.

The first step in the algorithm is to count the number of packets entering the butterfly.

Since the packets reside in distinct inputs, the total number of packets can be computed via

a parallel prefix computation. The prefix computation can be performed in O(log At) time

deterministically.

Next each packet independently chooses to be a splitter candidate with probability V%(T/n.

As we shall see, with high probability the number of candidates is between v'XT/2 and 3vXT/2.

This step requires only constant time.

The candidates are then sorted in O(logAl) time using a simple deterministic algorithm

based on couuting [70, 84].

After the candidates are sorted, every (IgN)th one in the sorted order is chosen to be a

splitter. This oversampling technique, due to Reif, ensures that each of the intervals contains

approximately the same number of splitters, with high probability. Note that we oversample

60 CHAPTER . PACKET ROUTING ALGORITHMS

by a factor of IgN, where N is the number of inputs in the entire network, independent of

the number of inputs, At, of the butterfly on which the algorithm is invoked. Since with

high probability there are at least VA-/21g N splitters, the subbutterflies at the next level of

recursion should have at most 2vA'ilgN inputs.

Next the splitters are distributed throughout the butterfly so that they can direct each

interval of packets to the appropriate subbutterfly. We distribute a copy of the median splitter

to each node in level 0 of the butterfly. Then we divide the splitters into upper and lower halves.

We distribute a copy of the median splitter from the upper half to each node in the upper half

of level 1. Similarly, we distribute a copy of the median splitter from the lower half to each

node in the lower half of level 1. The process continues in this fashion until all of the splitters

are used up. At this point, every node in the first O(log(v- 1M/ log N)) levels of the butterfly

has a, copy of a splitter. This step can be performed deterministically in O(log M) time.

After the splitters are positioned, each packet is routed to a ran4om row of the butterfly.

The packets are scheduled using the algorithm for routing on layered networks.

Each interval of packets is then routed to . different subbutterfly. This step is called splitter-

dirccied routing (84]. The paths of the packets are determined as follows. At level 0, each packet

compares itself to the median splitter. If it is larger, it moves to the upper half of the second

level, otherwise it moves to the lower half. The process is repeated at the level 1, with each

packet being directed to the appropriate quarter of level 2, and so on. The packets are scheduled

using the algorithm for routing on layered networks. When all the packets have been routed

along in the butterfly as deeply as the splitters are assigned, each subbutterfly at that lev'¢3

picks new splitters and pr ,=-ds recursively.

The last step before the recursive call is to position the packets in each subbutterfly in

distinct inputs. The problem of distributing a set of packets to distinct destinations is known

as the token distribution problem [74). On an Al-input butterfly where at most c packets enter

each input, Al packets can be distributed deterministically in O(c +l- log M) time.

The recursion continues until either the number of inputs, M, is smaller than 2VIJ' 7, or

the number of packets, n, is smaller than v'X". In the first case, the sort is completed using

Batcher's odd-even merge sort. An Al-input butterfly can sort M packets in O(log2 M) time

using odd-even merge sort. For Af - 2V'-9, the time is O(logN). In the second case, the

1.9. SORTING ON BUTTERFLIES 61

packets can be sorted d.aterministically in O(logAf) time by the same technique that is used in

step four to sort the candidates.

Wt can now make a rough estimlnte of the rmning time of this algorithm. Steps I and 2 are

performed deto'ministically in O(log M) tlme. Assuming that there are O(JVAI) candidates,

Steps 3, 4, and 5 also require O(logM) time. As we shall see, the expected time for Steps 6, 7

and 8 is O(log M). Although these steps sometimes take longer than expected, let us assume

for now that they do not. In this case, the running time is given by the recurrence

T) ' "T(2\(lgN')+O(ogM) A>2VV-'
O(ogN) M 2 01 9-

which has solution T(N) = O(log N).

1.9.2 Analysis

The analysis of the algorithm is broken into three parts, each cocresponding to a different use

of randomization in the algorithm. We first examine the use of randomization in selecting the

splitters. We show that, with high probability, the number of splitters chosen by each butterfly

is within a constant factor of the expectation and the number of packets In each interval is

smaller than the number of inputs to the butterfly to which it is assigned. Next, we bound the

probability that the congestion is large at any particular switch in Steps 6 and 7. Finally, we

show that if the packets are scheduled using the randomized algorithm for layered networks,

then it is unlikely that a delay of more than O(log N) will accumulate over the course of the

algorithm.

1.9.3 Bounding the load

The first step in the . ialysis is to show that, with high probability, the number of splitter

candidates chosen by each butterfly is within a constant factor of the expectation. We say that

an M-input butterfly is well-parlitioncd if the number of splitter candidates chosen is between

v/'A/2 and 3v/f'/2. The 3V7/2 upper bound ensures that the candidates can be sorted

deterministically by the butterfly in O(log A) time and the VAM/2 lower bound implies that

the subbutterflies at the next level of recursion will have at most 2V5'IlgN inputs. If all of

the butterflies are well-partitioned, then the algorithm terminates after O(loglogN) levels of

62 CHAPTER 1. PACKET ROUTING ALGORITIIMS

recursion. (The choice of 1/2 and 3/2 as the co-fficients of /W are not particularly important.

Other constants would serve equally weil.)

Lemma 22 For any fixcd constant &'- thcre is a constant k2 such that the probability that cny

butterfly with at least k2 lg2 N inputs is not well-partitioned is at most 1/Nh'.

Proof: We begin by considering a single Al.input butterfly that is to sort n packets. Since

each packet chooses independently to be a candidate, the number of candidates has a binomial

distribution. Let S be the number of successes in r independent Bernoulli trials where each

trial has probability p of success. Then we have PrJS =] = (r),.(I - p)r-.. We estimate the

area under the tails of this binomial distribution using a Chernoff-type bound [181. Following

Angluin and Valiant [4] we have

PrjS _<y 7rp] :< e- 0- -y 1rp/ 2

Pr[S ?_ y2rp - /

It our application r = i, p = VM'I/n, 'I = 1/2, and y2 = 3/2. For any fixed constant k3 , there

is a constant k2 such that the the right-hand sides of the two inequalities sum to at most I/Nk3

forM > k2 lg 2 N.

To bound the probability that any butterfly is not well-partitioned, we sum the probabilities

for all of the individual butterflies. Over the course of the algorithm, the algorithm is ".voked

on at most NlgN individual butterflies. Thus, the sum is at most IgN/Nk3-l. For any ki,

there is a k3 such that this sum is at most I/Nka. Q3

The next lemma shows that, with high probability, the number of packets in each interval

is at most a constant factor times its expectation. We say that an Al-input butterfly that is

assigned n packets to sort is a-split if every interval has size at most on Ig N/VAM". As we shall

see, if every butterfly is 0(1)-split and there are O(log log N) levels of recursion, then by lightly

loading the butterfly we can ensure that no butterfly is assigned too many packets to sort.

Lemm& 23 For any fixed constant k, there is a constant k2 such that the probability that every

butterfly is k2-split is at least 1 - 1101

Proof: We begin by examining a single packet in a single Al-input butterfly that is to sort

n-packets. To show that a packet lies in an interval of size at most k2nlg N/vrM it is sufficient

1.9. SORTING ON BUTTERFLIES 63

to show that both following and preceding it in the sorted order at least IgN of the next

k2n Ig N/2vW1 packets are candidates.

First we consider the packets that follow in the sorted order. The number of candidates

in & sequence of k2n lg N/2VA" packets has a binomial distribution. For r = k2nlg N/2VW,

p = v~'/Vn, rp = k2 IgN/2, and -i = 2/k 2, we have Pr[S < lgN] e-k2(-21k)'ISN/4. For any

L.3 we can make the right-hand side smaller than 1/Nk0 by choosing k2 large enough.

The calculations for the packets that precede in the sorted order are identical. The prob.

ability that fewer IgN of the preceding k2nlg N/2vWT packets are candidates is at most

1/N'. Thus, the probability that an individual packet lies in an interval of size greater than

k2n Ig N/2v?'? is at most 2/N.

To bound the probability that any interval in the butterfly is too large we sum the proba-

bilities that each individual packet lies in an interval that is too large. Since there are at most

N Ig N packets, this sum is at most 2lgN/Nk3_1 .

To bound the probability that any butterfly is not k2-split, we sum the probabilities that

each individual butterfly is not. Over the course of the algorithm, the algorithm is invoked on

at most NIgN butterflies. The sum of the probabilities is at most 21g2 N/Nk - 2. For any

constant k1, we can make this sum at most 1N by making k3 large enough. 0

The remainder of the analysis is conditioned on the event that every butterfly is well-

partitioned and O(l).split, which occurs with high probability. Two technical points bear

mentioning. First, Lemma 22 requires that the number of inputs to every butterfly be at least

k2 1g2 N, where k2 is some constant. Since the recursion termina es when the number of inputs

is 2V-91, N must be large enough that 2V61_' > k2 lg
2 N. Second, both Lemmas 22 and 23

hold independent of the number of packets to be sorted by each butterfly. Thus, as the following

lemmas show, we can adjust the load on the butterfly in order to ensure that each Al-input

butterfly receives at most Mf packets to sort.

Lemma 24 The number of levcls of rectursion is O(loglog N).

Proof: At each level of recursion the number of inputs drops from Al to at most 2v'X'/lg N,

until the number of inputs reaches 20 . "

04 ClfAPTER I. PACKET ROUTING ALGORITIIMS

Lemma 25 Thcre is an or > 0 such that if the number of packets to be sorted is Nlis N, then

the number of packets are asigncd to arty AI.input butterfly is at most At.

Proof: Since the ratio of packets to inputs is 1/lg + 1 N at the top level of the recursion, and

increases by at most a constant factor at each of O(Iog log N) levels, it is possible to choose o

such that at the bottom level It will be at most one. 0

1.9.4 Bounding the congestion at each switch

The second step in the analysis is to bound the probability that too many packets pass through

any switch in Steps 6 and 7. The following lemma, provides a bound on the probability that

the congestion, c, in an ill.input butterfly exccxls Ig At in either of of these steps.

Lemma 26 Thcm is a fizcd constant #I such that for s > Ig At,

Pr(c_]_ -- s

Proof: For the sake of brevity, we examine Step 7 only. A similar (aid simpler) analysis holds

for Step 6.

We begin by counting the number of packets that can possibly use a switch. Let L denote

the depth of an At-input butterfly, i.e., L = g M. From a switch at level 1, 0 _< 1 < L, 21-1

rows cani be reached. The splitters partition these rows into subbutterflies. From the previous

argument, the number of packets that enter each of these subbutterflies is at most the number

of inputs, with high probability. Thus, at most 2 L-1 packets can pass through the switch.

Next we determine the probability that a. packet that can pass through the switch actually

does so. A switch at level I can be reached front 21 different inputs. Since each packet begins

in a random input, the probability that it can reach the switch is 21-1.

The number of packets, -, that pass through a particular witch at level I has a binomial

distribution. The number of trials is r = 2L-1 and the probability of success is p = 21-l .

Thus, Pr[S = s] =(2) (21-L) (1 - W. Uiing the inequality () _< (ae/b)', we have

Pr[S = s] 5 (cs)'. For s > 1, the right-hand side decreases by at least a constant factor with

each increase of 1 in s. Thus Pr[S _ s] _< 0 ((e/s)').

1.9. SORTING ON BUTTERFLIFS 65

We bound the congestion in the entire butterfly by summing the individual probabillties

over all 20(t) twitches in the butterfly. We have

Pr[c >_ <): 0

For s . L, we have Prjc >_ .) : (#1/s)' for some constant C33. U

1.9.5 Bounding the cumulative delay

Since a subbutterfly does not begin to execute its algori0i.an until the larger butterfly at the

previous level of recursion is finished, delay in excess of the time allotted to each butterfly

accumulates over the course of the algorithm. An At-input butterfly is allotted O(logM)

time to perform its steps. However, Steps 6, 7, and 8 are not guaranteed to terminate in

lime O(log At). It is tempting to try to prove that these steps terminate quickly with high

probability. This approach fails because at the lower levels of the recursion the problem size

is so small that nothing can be ascertained with high probability. Instead we must argue that

although delay may occur at any particular step, it is unlikely that 3 lot of delay will accumulate

over a sequence of steps.

The delay from Step 8 is relatively easy to analyze. This step requires O(c + L) time; the

delay depends only on the congestion. Lemma 26 bounds the probability that the congestion

is large.

There are two possible causes of delay in Steps 6 and 7. A poor set of random rows for

the packets can cause congestion at some node, which guarantees that some packet will arrive

at its destination late. On the othr hand, even if the congestion is small, a poor cho*,e for

the random ranks used by the scheduling algorithm may delay a packet. The following pair of

lemmas bounds the probability that the delay from these steps is large. The first is a restatement

of the main scheduling theorem for layered networks. It bounds the probability that a packet

will be delayed when the congestion is small. The second puts this bound together with "he

bound that the congestion is large from Lemma 26.

Lemma 27 For a bounded-degree layered network with L levels and a set o1 20(L) packets whose

paths have congestion c, there is a fired constant P2 such that the probability that any packet

arries at its destination after time w, w > L, is at most (# 2c/w)w.

66 CIIAPTERL . PACKET ROUTING ALGORITHMS

Lemma 28 There is a constant ,l > I such that the probability Steps 6 and 7 require more

than w tlime step, iv ? L, is at most 2 (1/ 3)w.

Proof: For the sake of brevity, we examine Step 7 only. A similar analysis holds for Step 6.

Vt break the analysis into two cases according to whether the congestion is small or large.

Let T be the time at which the lt packct arrives. Then

Pr[T7'w) :_ Pr[T >_ wjc < w/13] + Pr[c _ w:j/#].

We use Lemn. 27 to bound the first term on the right. Plugging in w/P3h for c yields

Pr[T >_ u[c < w/,0 31 _ (1/ 3)0. We use Lemma 26 to bound the second term on the right.

Plugging in w/02P3 for c yields Pr(c _ w// 203J < (0102#3/w)w. Since w > L 2_ ,/I"7, and

pl, &, and P33 are constants, W > /1013 for sufficiently large N. '

The following lmmn bounds the combined delay of Steps 6, 7, 8.

Lemma 29 There are constants ,P4 and fis > 1 such that the probability that Steps 6, 7, 8

together require lime P4L + wv is at most (1/35)w.

Proof: Step 8 can be performed deteirministically in time O(c + L). From Lemma 26 we have

Pr[c 2_ s] <_'(/s)', for s > L. For our purposes, a weaker bound on this probability suffices.

Since I is a constant, there is a constant k, such that (Il/k)' < (l/a)' for sufficiently large

L. Combining this bound with that of Lemma 27 yields the desired result. 0

To complete our analysis of the algorithm, we need to bound the probability that more than

O(logN) delay accrues during the sort.

Lemma 30 For any fized constant kl, there is a constant k2 such that the probability that the

cumulative delay is more than k2 lgN is at most lINki.

Proof: The cumulative delay at the bottom level of the recursion is the sum of the delay at

each of the butterflies on the branch of the recursion tree from the top level to the leaf. Let Di

be the delay beyond 14L at the ith level of the recursion. Then Pr[D = w] < (1/#.5)w. Notice

that there is no dependence on i in this expression. Let D be the cumulative delay on a branch

1.9. SORTING ON BUTTERFLIES 67

of the recursion from the top level to a. leaf. Then D = os osN) D.. Generating functions

help us hcre. The generating function for Di is

o

GD.(:) = Pr[D = :,
wRO

where z' can be thought of as a place holder. To sum the delay, we simply multi-

ply the generating functions. Thus, the generating function for the cumulative delay is
GD,(-) = llS°n) GD, (:). The coefficient of r" in Gd(z) is (-+°(I4))(l/!5)'. For

to = O(loglog N), this coefficient is at most (O(1)/Ps)"'. For any h, there is a k2 such that

E00kjtgN(O(i)/PS)W is at most 1k3.

To bound the probability that the cumulative delay exceeds k2 Ig N on any branch of the

recursion, we sum the individua) probabilities for all of the branches. There are at most N

branches. Thus, the sum is at most 1INk - i. For any ki, there k I k such that this sum is at

most 1/NkI. . '

1.9.6 Putting it all together

Theorem 31 With high probability, an N Ig N-node butterfly can sort N Ig N packets in

O(log N) steps using constant-si.:e queues.

Proof- The algorithm for sorting NIgN packets on an Nig N-node butterfly uses the algo-

rithm for sorting N/lg 0 N packets as a subroutine. First each packet independently chooses

to be a splitter with probability 1/ lg*+' N. With high probability, this leaves O(N/ log* N)

candidates. The candidates are sorted using the subroutine. Then every lgNth candidate is

selected to be a splitter, leaving O(N/ loge+ ' N) splitters. The splitters are distributed through-

out the butterfly, and splitter-directed routing is used to route intervals of size O(log*+ 2 N)

to subbutterflies with O(log ' +l N) inputs. Now each interval of O(log*+ 2 N) packets resides

in a group of 0(loge+' N) butterfly rows. Each of these rows contains 0(logN) packets. The

packets in each row can be sorted in 0(log N) time using an odd-even transposition sort. With

a fixed number of row sorts and permutations, all of the packets can be sorted in O(log N) time

using Columnsort. 0

GS CIAPTER 1. PACKET ROUTING ALGORITHMS

1.10 Counterexamples to on-line algorithms

This section presents examples where several natural on-line scheduling strategies do poorly.

Based oil these examples, we suspect that finding an on-line algorithm that can schedule any

set of paths In O(c + d) steps using constant-size queues will be a. challenging task.

In the first exanple, we describe all N-node network in which a set of packets with con-

gestion and dilation 0(1) requires fl(log2 N/ loglog N) steps to be delivered using the strategy

of Section 1.3. This example does not contradict the results of Section 1.3, since the network

has O(log2 N) levels. However, it shows that reducing the congestion and dilation below the

number of levels will not necessarily improve the running time.

Observation 32 For the strtegy of Scction 1.8, there is an N-node dircctcd acyclic network

of dcgrce 3 and a sct of paths with congestion c = 3 and dilation d = 3 where the czpccted length

of the schcdule is !Q(log2 N/log log A).

Proof: The network consists of many disjoint copies of the subnetwork pictured in Figure 1-16.

For simplicity, we dispense with the initial queues; the packets originate in edge queues. The

subnetwork is composed of k/logk linear chins of length k, where k shall later be shown to

be O(log N). The second node of each linear chain is connected to the second to last node

of the previous chain by a diagonal edge. We assume that at the end of each edge there is a

queue that can store 2 packets. Initially, the queue into the first node of each chain contains an

end-of-stream (EOS) signal and one packet, and the queue into the second node contains two

packets. A packet's destination is the last node in the previous chain. Each packet takes the

diagonal edge to the previous chain and then the last edge in the chain. Thus, the length of

the longest path is d = 3.

When the ranks r,... ,r3k/lsk of the packets p,.. ,P /bsk are chosen so that r < ri+1

for 1 _< i < 3k/logk, packet Pa3./logk requires fl(k2/logk) steps to reach its destination. The

scenario unfolds as follows. Packets pi and P2 take a. diagonal edge in the first two steps. These

packets cannot advance until the EOS reaches the end of tile first chain, in step k. In the

meantime, ghosts with ranks r, r2, and r3, travel down the second chain, but packet p3 blocks

an EOS signal from traveling down the chain. Packets p4 and ps ;re waiting for this EOS signal.

They cannot advance until step 2k. In this fashion, the delay is propagated down to packet

1.10. COUNTEREXAMPLES TO ON-LINE ALGORITHMS 69

k

EO 3 -0- p2 P1 I -~-I~-

IOSip,4-o-- P

Figure 1-16: Example 1.

P3k/kog 3

A simple calculation reveals that the probability that r < r +l for 1 _5 i < 3k/log k is

1/ 2e(k). Thus, if we have 2 e(k) copies of the subnetwork, we expect the ranks of the packets

to be sorted in one of them. For the total number of nodes in the network to be N, we need

k = O(log N). In this case, we expect some packet to be delayed fl(log 2 N/loglogN) steps in

one copy of the subnetwork. 0"

It is somewhat unfair to say that the optimal schedule for this example has length O(c+d) =

0(l), since ghosts and EQS signals must travel a distance of O(log N). However, even if the

EOS signals are replaced by packets with the appropriate ranks, the dilation is only O(log N),

and thus the optimum schedule has length 0(log N).

The second example is quite general. It shows that for any deterministic strategy that

chooser '- order in which packets pass through a switch independent of the future paths of

the pac there is a network and a set of paths with congestion c and dilation d for which the

schedule produced has length at least c(d - 1)/ log c. This observation covers strategies such

as giving priority to the packet that has spent the most (or least) time waiting in queues, and

giving priority to the packet that arrives first at a switch. The network is a complete binary

tree of height d - 1 with an auxiliary edge from the root to an auxiliary node.

Observ'ation 33 For any deterministic strategy that chooses the order in which packets through

70 CIHAPTEIR 1. PACKET ROUTING ALGORITHMS

a switch indejndent of the paths that the packets take after they pass through the switch, there

is a network and a set of paths with congestion c arnd dilation d for which the schedule produccd

has length c(d - 1)/ log c.

Proof: We construct the example for congestion c and dilation d, E(c, d), recursively. The

base case is the example E(c, logc + 1). Each of the c leaves sends a packet to the auxiliary

node, causing congestion c in tie auxiiary edge. Tie network for E(c, d) contains c copies of

the network for E(c, d - log c). First, the auxiliary nodes for theses copies are paired up and

merged so that there are c/2 auxil~ary nodes each with two auxiliary edges into it. Next, the

au:dliary nodes become the leaves of a complete binary tree of height log c - 1 with its own

auxiliary node and edge. For each copy of E(c, d - log c), the deterministic scheduling strategy

chooses some packet to cross its auxiliary edge l- '. We extend the path of this packet so that

it traverses the auxiliary edge in E(c,d). The dilation of the new set of paths is d and the

congestion c. The length of the schedule, T(c,d), is given by the recurrence

T(cTd) (c,d-logc)+logc-1+c d>logc+1

{ log c+c d=logc+1

and has solution T(c,d) >_ c(d- 1)/ log. 0

The third example shows that the simple look-ahead strategy of giving priority to the packet

with the farthest distance left to travel fails as well.

Observation 34 For the strategy in which the packet with the farthest distance left to travel (or

the farthest total distance to trauel) is given priority, there is an N-node network with diameter

O(VV') and a set of paths with congestion 0('/NV) and dilation 0(1W) for which the schedule

produced has length fl(N).

Proof: The network consists of k linear chains labeled 0 through k - 1. Chain i is composed

of 3k - 2 - i nodes labeled 0 through 3k - 3 - i. It meets chain i + 1 at node k - 1 - i and at

every second node thereafter up to node k + i - 1. Figure 1-17 shows the network for k = 4.

We assume that the queue the end of each edge has unlimited size and that at each step a

node can send at most one paci .it. Initially, the first node of each chain holds k packets. The

destination of each of these packets is the end of the chain. Note that packets in chain i have

1.10. COUNTEREXAMPLES TO ON-LINE ALGORITHMS 71

0 1 2 3 4 5 6 7 8 9

0 0o-o_

2

3

Figure 1-17: Example 3.

higher priority than those in the chain i + I whenever they meet since the chain i packets mut

travel one step farther than those in chain i + 1.

The key to this example is that the packets in chain i + I are delayed by all of the packet ,

in chain i at every meeting point between chains i and i + 1, Since the packets in chain 0 are

never delayed and the packets in chain 1 are not delayed by any packets other than those in

chain 0, the packets in these two chains arrive at their one meeting point simultaneously. At

this meeting point, the packets in chain 0 have priority and delay the packets in chain I by k

steps. In general, the packets in chains i and i + 1 arrive at meeting point j simultaneously

because the packets in chain i have been delayed j - 1 times by chain i - 1 and the packets in

chain i + 1 have been delayed j - 1 times by the chain i.

The clain implies the theorem for k = VN. The packets in chain k - 1 are delayed by k

packets at each of k - 1 meeting points, resulting in a total delay of fl(N). 0

The fourth example shows that the natural strategy of assigning priorities to the packets at

random is not effective either.

Observation 35 For the stritegy of assigning each packet a random rank and giving priority to

the packet with the lowest rank, there is an N-node network with diameter O(log N/log log N)

and a set of paths with dilation d = O(log N/loglog N) and congestion c = O(log N/loglog N)

where the expected length of the schedule is f?((log NI log log N) 312).

Proof: As in Example 1, the network consists of many copies of a subnetwork. Each subnetwork

is constructed so that d = c = k/log k. A subnetwork consists of a linear chain of length d,

72 CHAPTER 1. PACKET ROUTING ALGORITHMS

d

Figure 1-18: Example 4.

with loops of lcngth Vd7 between adjacent nodes (see Figure 1-18). The packets are broken into

\d groups numbered 0 through V71 - 1 of Vd1 packets each. The pckets in group i use the

linear chain for iv' steps and then use \l- i loops as their path. As in Example 3, we assume

that queues have unlimited capacity and that at each step a node can send a single packet.

If the random ranks are assigned so that the packets in group i have smaller ranks than

the packets in groups with larger numbers, then the packets in group i delay the packets in

groups with larger numbers by d - iAdl steps. Thus the last packet experiences an fl(dV7) =

O((k/logk) 3/2) delay.

Once again the ranks of the packets must have a specific order, which can be shown to

happen with high probability given enough copies of the subnetwork. As in Observation 32, it

is not hard to show this requires k = O(log N). 0

1.11 Remarks

The scheduling algorithm from Section 1.3 can be used as a subroutine in algorithms for emu-

lating shared-memory machines on bounded-degree networks. A shared-memory machine with

a large address space can be emulated by randomly hashing the memory locations to the nodes

of a butterfly as in [35] and [81]. The hashing ensures that the congestion of the packets im-

plementing each memory access step is small. The algorithm from Section 1.3 can be used to

1.11. REMARKS 73

schedule the the movements of these packets.

The algorithm for sorting on the butterfly with constant.size queues can modified to sort

kMk packets on a k.dimensional mesh with side length At in O(kM) time using constant-size

queues.

Given a set of n packets whose paths have congestion c on a layered network with d levels,

a. setting of ranks that ensures delivery in time O(c + d + log n) can be found can be found

off-line deterninistically in time 2 00+44+'I"C) . The proof uses the Raghavan-Spencer technique

178, 89) to sequentially find a setting of the ranks so that no bad event corresponding to a delay

sequence occurs.

One application is in preparing simulations by volume and area-universal networks off-line so

that no random bits are needed. As before, the first step is to map the processors of the network

to be simulated, B, to the processors of the area-universal network, U, front Section 1.8 using

the recursive decomposition strategy from [56. Network U has N processors, and B has area

O(N). To sitnulate each step of B, network U must route a set df n = O(N/ log N) messages

with load factor A = 0(log N). The second step is to find paths for the messages. Since these

messages link the same processors at every step of B, it is sufficient to find paths once off-line.

They can be reused over and over during the simulation. Given a set of it messages with load

factor A, it is possible to find a set of paths with congestion c = 0(,% + log Al) and dilation

d = 0(log M) in a fat-tree with root capacity Al off-line deterministically in time polynomial

in n and At. The final step is to find a set of ranks for the messages. These ranks can also

be reused at each step of the simulation. Network U has root capacity At = O(vw/log N).

Thus, both the paths and the ranks for the packets can be determined off-line deterministically

in time polynomial in N so that the time to simulate each step of D is O(logN).

By making minor modifications to the definition of a delay sequence, it is possible to prove

that not only does the late arrival of some packet imply that a bad event occurs, but also if

a bad event occurs then some packet is delayed. More precisely, some packet arrives at step

d + w where tw = in + qf if and only if there is a delay sequence of length I < d + 2f - 1 with

ni + qf packets.

74 CHAPTER 1. PACKET ROUTING ALGORITHMS

Chapter 2

Distributed random-access

machines

2.1 Introduction

Underlying any realization of a parallel random-access machine (PRAM) is a communication

network that conveys information between processors and memory banks. Yet in most PRAM

models, communication issues are largely ignored. The basic assumption in these models is that

in unit time each processor can simultaneously access one memory location. For truly large

parallel computers, however, computer engineers may be hard pressed to implement networks

with the communication bandwidth demanded by this assumption, due in part to packaging

constraints. The difficulty of building such networks threatens the validity of the PRAM as a

predictor of algorithmic performance. This chapter introduces a more restricted PRAM model,

which we call a distributed random-a-¢cess machine (DRAM), to reflect an assumption of limited

communication bandwidth in the underlying network.

In a communication network, we can measure the cost of communication in terms of the

number of messages that must cross a cut of the network, as in [29] and [56]. Specifically,

a cut S of a network' is a subset of the nodes of the network. The capacity cap(S) is the

This chapter describes joint research with Charles Leiserson [58].
'We assume that in the communication network, each processor has its own local memory, the processors

are interconnected as a graph, and routing of messages is performed by the processors. The generalization to
the -'ase when processors, memories, and switches are distinct entities is straightforward, but complicates the

75

76 CILAPTER.2. DISTRIBUTED RANDOM-ACCESS MACHINES

number of wires connecting processors in S with processors in the rest of the network 3, i.e.,

the bandwidth of communication between S and 3. For a set M of messages, we define th.', load

of M on a cut S to be the number of messages in Al whose source is in S and whose destination

is in 9 or vice versa. The load factor of At on S is

load(A3, S)
X(A, S)= cap(S)

and the load factor of Al on the entire network is

ACM) = mxA(M, S).

The load factor provides a simple lower bound on the time required to deliver a set of messages.

For instance, if there are 10 messages to be sent across a cut of capacity 3, the time required

to deliver all 10 messages is at least the load factor 10/3.

There are two commonly occurring types of message congestion that the load factor measures

effectively. One is the "hot spot" phenomenon identified by Pfister and Norton [75]. When

many processors send messages to a single other processor, large delays can be experienced as

messages queue for access to that other processor. In this situation, the load factor on the cut

that isolates the single processor is high. The second phenomenon is message congestion due to

pinboundedness. In this case, it is the limited bandwidth imposed by the packaging technology

that can cause high load factors. For example, the cut of the network that limits communication

performance for some set of messages might correspond to the pins on a printed-circuit board

or to the cables between two cabinets.

The load-factor lower bound can be met to within a polylogarithmic factor as an upper

bound on many networks, including volume and area-universal networks, such as fat-trees

[29, 56], as well as the standard universal routing networks, such as the Boolean hypercube

[96]. The lower bound is weak on the standard universal routing networks because every cut

of these networks is large relative to the number of processors in the smaller side of the cut,

but these network-s may be more difficult to construct on a large scale because of packaging

limitations. Networks for which the load factor lower bound cannot be approached to witL'n

a, polylogarithmic factor as an upper bound include linear arrays, meshes, and high-diameter

networks in general.

definitions.

2.2. TIE DRAM MODEL 77

In the PRAM model, the issue of communication bandwidth does nt arise even though

most parallel computers implement remote memory accesses by routing messages through an

underlying network. In the PRAM model, a set of memory accesses is presumed to take unit

time, reflecting the assumption that all sets of messages can be routed through the network

with comparable ease. In the DRAM model, a set of memory accesses takes time equal to the

load factor of the set of messages, which reflects the unequal times required to route sets 01

messages with different load factors.

This chapter gives DRAM algorithms that solve many graph problems with efficient com-

munication. Our algorithms can be exeruted on any of the popular PRAM models because a

PRAM can be viewed as a DRAM in which communication costs are ignored.

The remainder of this chapter is organized as follows. Section 2.2 contains a specification

of the DRAM, model and the implementation of data structures in the model. The section

demonstrates how a DRAM models the congestion produced by techniques such as "recursive

doubling" that are frequently used in PRAM algorithms. Sectioi 2.3 defines the notion of a

conservative algorithm as a concrete realization of a communication-efficient DRAM algorithm,

and gives a "Shortcut Lemma" that forms the basis of the conservative algorithms in this

chapter. Section 2.4 presents a conservative urecursive pairing" technique that can be usel to

perform many of the same functions as on lists as recursive doubling. Section 2.5 presents a

linear-space exclusive-read exclusive-write conservative utree contraction" algorithm based on

the ideas of Miller and Reif [68). Section 2.6 presents treej-: computations, which are generaliza-

tions of the parallel prefix computation [16, 24, 71) to trees. We show that treefix computations

can be performed using the tree contraction algorithm of Section 2.5. Section 2.7 gives short,

efficient, parallel algorithms for tree and graph problems, most of which are based on treefix

computations. Section 2.8 explores the use of concurrent reads and writes in DRAM algorithms.

Section 2.9 discusses the relationship between the DRAM model and more traditional PRAM

models, as well as the ramifications of using the DRAM model in practical situations.

2.2 The DRAM model

This section introduces the abstraction of a distributed random-access machine (DRAM). We

show how a parallel data structure can be embedded in a DRAM, and we define the load

78 CH!A PTER 2. DISTRIBUTED R.ANDOM-ACCESS MACHINES

factor or a dita structure. We show how the embedding of a data structure in a network

call cause congestion in the underlying network when the pointers of the data structure are

accessed in parallel, and we also demonstrate that a parallel algorithim can produce substantial

congestion in an underlying network, even when there is little congestion implicit in the input

data struicture. We illustrate how a DRAM accurately models these two phenomena.

A DRAM consists of a set of n irocessors. All memory in the DRAM is local to the

processors, with each processor holding a. small number of O(ign).blt, registers. A processor

can read, write, and perform atitimetic and logical functions on values stored in its local

memory. It can also read and write memory in other processors. (A processor can transfer

information betwetn two remote memory locations through the use of local temporaries.) Each

set of memory accesses is performed in a memory access step, and any of the standard PRAM

assumptions about simultaneous reads or writes can be made. Our algorithms use only mutually

exclusive memory references, however, so these special cases never arise.

The essential difference between a DRAM and a PRAM is that the DRAM models commu-

nication costs. We presume that remote memory accesses are implemented by routing messages

through ani underlying network. We model the communication limitations impoged by the net-

work by assigning a numerical capacity cap(S) to each cut (subset of processors) S of the

DRAM equal to the number of wires connecting processors in S with processors in the rest

of the network. Thus, there are many different DRAM's corresponding to the many possible

assigrments of capacities to cuts. For a set At of memory accesses, we define load(At,S) to be

the number of at.:esses in Alf from a processor in S to a processor in 3 (the rest of the DRAM),

or vice versa. The load fartor of A! oi S is A(Mt, S) = !oad(AI, S)/cap(S), and the load factor

of At on the DRAM is ,M) = maxs A(M, S).

The basic assumption in the DRAM model is that the time required to perform a set M of

memory accesses is the load factor A(M). (Local tperations take unit time.) This assumption

constitutes the principal difference between the DRAM and the network it models. We know

that the load factor is a lower bound on the time required in both the network and the DRAM.

If the aetwork's message routing algorithm cannot approach this lower bound as an upper

bound (for example, if the network has high diameter), then the network is not well modeled

by the DRAM. If the network's routing algorithm can nearly achieve the load factor as an upper

2.2. TIlE DRAM MODEL 79

bound, khen the analysis of an algorithm in the DRAM model will relixbly predict the actual

performance of the algorithm on the netwerk. Section 2.9 discusses some networks for which

the DRAM is a reasonable model, including volune.universal networks isuch as fat.trees (6].

A natural way to cmbed a. data structure in a DRAM is to put one r.cord of the data

structure into each processor, as in the "data parallel" model 133). The record can contain data,

including pointeki to records in other processors. We measure the quality of an embedding by

treating the data structure as a set of pointers and generaizln% the concept of load factor to

sets of pointers. The load of a set P of pointers across a cut S, denoted load(P, S), is the

number of pointers in P from a processor in S to a procet:or in W, or vice versa. The load

factor of P on the entire DRAM is

load(PS)5 cap(S)"

The load factor of a data structure Is the load factor of the set of its pointers. For many

problems, good em.eddings of datu structures can be found in particular networks for which

the DRAM is a good abstraction (see Section 2.9).

There are generally two situations in which message congestion can arise during the execu-

tion of an algorithm on a network, both of which are modeled accurately by a DRAM whose cut

capacities correspomnd to the cut capacities of the network. In the first situation, the embedding

of a data structure cauees congestion because many of its pointers cross a relatively smal cItA

of z:he ietwork. A parallel access of the information across those pointers generates substantial

message traffic across the cut. In the second situation, the data struc" re is embedded with few

pointers crossing the cut, but the algorithm itself generates substantial message traffic across

the cut. We now illustrate these two situations.

As an example of the firut situation, consider an embedding of a simple linear list in which

alternate list elements are placed on opposite sides of a narrow cut of a network. If each element

fetches a value from the next element in the list, the load factor across the cut is large. In the

DRAM modcl, this congestion is modeled by the increase in time required for the memory

accesses across the cut. (Observe that in a PLAM model, the congestion is not modeled since

any set of memory accesses is assumed to take unit time.) Of course, a list can typically be

embedded in a network so that the number of list pointers crossing any cut is small compared

to the capacity of the cut, again a situation that can be modeled by a DIRM.

so CIIAP'TER 2. DISTRIBUTED IRNDOM-ACCESS MACHINES

li the second situation, the congestion Is produced by an algorithm. As an example, con-

sider the "recursive doubling" or "pointer jumping" technique (101) used extensively by PRAM

algorithms in the literature. Tile idea is that each element i of a list initially hm a pointer

pji) to the next element in the list. At each step, element i computes Pi) - P(/ i)), doubling

the distance between i and the element it points to, until it points to the end of the list. This

technique can be used, anmong other things, to compute the distance d(i) of each element i to

the end of the list. Initially, each element i sets d(i) - 1. At each pointer-jumping step, each

element i not pointing to the end of the list computes d(i) - d(i)+ d(p(i)). In a PRAM model,

the running time on a list of length i1 is O(lg n). Variants of this technique are used for path

compression, vertex numbering, and parallel prefix computations [68, 88, 92, 101).

We now show that recursive doubling can be expensive even when a uata structure has a

good embedding in a network. Figure 2.1 shows a cut of capacity 3 separating the two halves

of a linked list of 16 elements. In the first step of recursive doubling, tle load on the cut is only

I because the only access across the cut occurs when element 8 access s the data- in element 9.

In the second step, the load is 2 because element 7 acces'lis element 9 and element 8 accetses

element 10. it the third step, the load is 4, azid in the fourth step, each of the first eight

elements makes an access across the cut, creating a load of 8. Since the load factor of the cut in

the fourth step is 8/3, this set of accesses requires at least 3 time units. Whereas the capacity of

the cut is large enough to support the memory accesses across it in the first step, by the fourth

step, the cut capacity is insufficient. In a DRAM, this situation is modeled by the increased

time to perform the memory accesses in the fourth step compared with those in the first step.

The focus of this chapter is avoiding this second cause of congestion. In Section 2.4, we

shall show how a rccursive pairing strategy can perform many of the same functions as recursive

doubling, l)ut in a communication-efficient fashion.

2.3 Conservative algorithms

This section introduces the notion of a conservative algorithm. In the DRAM model, a conser-

vative algorithm is communication efficient in the sense that it never produces more congestion

across cuts of the DRAM than is implicit in the input data structure. We give an important

lemma that shows how pointers in a data structure can be "shortcut" without introducing

2.3. CONSERVATIVE ALGORITHMS 81

Figure 2-1: A cut of capacity 3 separating two halves of a linked list. The load of the list on
the cut is I. At the final step of rccursive doubling, each element on the left side of the cut
accesse an element on the right, which induces a. load of 8 on the cut.

congestion.

2t

A conservative algorithm is a DRAM algorithm in which the load factor of memory accesses

in any step is bounded by the load factor of the input data structure, independent of the cut

capacities of the DRLAM on which the algorithm is executed. To be precise, we define a set Al

of nmemory accesses to be conserv'ative with respect to another setf M' of memory accesses if for

ali cuts S of a DRAM, we have load(M~,S) < load(M',S). Dy implication, whatever the cut

capacities of the DRAM, we have A(M) _ A(M'). WVe make the natural extension of the term

conservative to sets of pointers and data structures. A conservative algorithm is thtus one all

of whose memory accesses are conservative with respect to the input data structure. Thus, if

a conservative algorithm runs for T steps on an input data structure with load facte.," A, then

the total time for the algorithm is at most AT.

If at every step, the memory accesses of an algorithm co. ;pond to a subset of pointers

i n the input data structure1 then the algorithm is certainly conservative since ii .A i,. a subset

of A', then we have load(A') _< load(M'). For example, synchronous distributed algorithms,

such as the network flow algorith~ms of Goldbe.rg antd Tarjan [26, 27], are conservative for this
reason. We do not wish to restrict our attention to thlis limited class of conservative algorithms

because synchronous distributed algorithms cannot efficiently solve certain problems on graphs

with higan diameter. For example, the problem considered ar1 cr of determining the distance of

S2 CILAPTEIR 2. DISTRIBUTED RANDOM-ACCESS MACHINES

C c C Cc

Figure 2-2: The Shortcut Lemnma. li each of the four cases illustrated, the load factor across
the cut is either unchanged or diminished by replacing a + b and b - c with a C c.

exch 1einlent to the end of the list cannot be solved in less than linear time with a synchronous

distributed algorithm. A PRAM algorithm, however, can perform such the computation in

logarithmic time, for example, by recursive doubling, but recursive doubling is not conservative.

We would like to know conditions under which processors in a DRAM can communicate

directly with distant locations in a data structure without increasing communication require-

ments as measured by the load factor. The following simple, but important, lemma provides

conditions that are sufficient for any DRAM.

Lemma 36 (Shortcut Lemma) Suppose a set P of pointers in a data structure contains

pointers a -- b and b -# c. Then the set Q of pointers defined by

Q = PU (a -4 c) - (a.--, b, - c)

is conservative with respect to P. Aoreover, any set Q of pointers is conservative with respect

to another set P of pointers if there exist pointer-disjoint paths in P that connect the endpoints

of pointers in Q.

Proof: We show only the first part of the lemma since the second part follows immediately by

induction. We shall show that load(Q,S) _< load(P, S) for any cut S of the DRAM. Consider

the eight ways in wldch a, b, and c can be assigned to sides of the partition induced by a cut S.

Half the cases can be eliminated by symmetry if we assume that a is on the left side. In each of

the four remaining cases, the load across the cut is either unchanged or diminished when a -- b

and b -+ c are replaced with a -+ c, as is shown in Figure 2-2. 0

2.4. LIST CONTRACTION 83

In summary, this section has introduced the notion of a conservative algorithm. An upper

bound on the time required by a. conservative algorithm can be determined soiely from the

embedding of an input data structure on the DRA.M. If the number of steps of the conservative

algorithm is T and the load factor of the input data structure is A, then the total time is at

most AT. A user of a conservative algorithm therefore need only minimize the congestion of

pointers in the input data structure across cuts of the DRAM to minimize the time required by

the algorithm. If the embedding of the data structure is good, that is, its load factor is small,

then a conservative algorithm that uses a small number of steps runs fast.

2.4 List contraction

In this section we present a conservative urecursive pairing" algorithm, Algorithm LC, that can

perform many of the same functions on lists as recursive doubling. The idea is to contract an

input list by repeatedly pairing and merging adjacent elements of the list until c ly a single

element remains. The merges are recorded as internal nodes of a binary contraction tree whose

leaves are the elements in the input list. After building the contraction tree, operations auch

as broadcasting from the root or parallel prefix can be performed in a conservative fashion.

Algorithm LC is a randomized algorithm, and with high probability, the height of the con-

traction tree and the number of steps on a DRAM are both O(Ign), where n is the number

of elements in the input list. A deterministic variant based on deterministic coin tossing (20]

runs in O(lg 7lg rn) steps, where in is the number of processors in the DRAM, and produces

a contraction tree of height O(lg n).

The recursive pairing strategy is illustrated in Figure 2.3 for a list (A, B, C, D, E). In the

first step, elements B and C pair and merge, as do elements D and E. The merges are shown as

contours in tle figure. A new contracted list (A, BC, DE) is formed from the unpaired element

A and the two compound elements BC and DE. After the second step of the algorithm, the

contracted list consists of the elements ABC and DE. The third and final step reduces the list

to the single element ABCDE.

In Algorithm LC, the contours of Figure 2-3 are represented in a data structure called

a contraction tree. The leaves of the contraction tree are the list elements, and the internal

nodes are the contours. To maintain the contraction-tree data structure, the algorithm requires

8 CIMAPTER. 2. DISTRIBUTED RANDOM-ACCESS MACHINES

constant extra space for each element in the input list. Each processor contains two elements:

an element in the input list, and a sxirc element that will act as an internal node in the

contraction tree. We call the two elements in the same processor mates. Each element holds

a pointer to an unused internal node, which for each list element initially points to its mate.

The use of spare nodes allows the algorithm to distribute the space for the internal nodes of

the contraction tree uniformly over the eloments in the list. (Spare internal nodes are used in

[(4] and (55) for similar reasons, but in a different context.)

Ve now describe the operation of Algorithm LC, which is illustrated in Figure 2.4 for the

example of Figure 2.3. (A description in pseudocode can be found in 157].) In the first step, each

eement of the input list randomly picks either its left or right neighbor. An element at the left

or right end of the list always picks its only neighbor. If two elements pick each other, then they

merge. The merge is recorded by making the spare of the left element of the pair be the root of

:L new contraction tree. The spare of the right element becomes the spare for the root, and the

elements themselves become the children of the root. The roots of the new contraction trees

and the unpaired list elements now form themselves into a new list representing the contracted

list, upon which the algorithm operates recursively.

At each step of the algorithm, any given element of the contracted list is a set of consecutive

elements in the input list-a. contour in Figure 2-3. The set is represented by a contraction-

tree data structure whose leaves are the elements of the set and whose internal nodes record

the merges. When the entire input list has been contracted to a single node, the algorithm

terminates and a single contraction tree records all of the merges.

To describe the efficiency of randomized algorithms such as Algorithm LC, we shall some-

times say that an algorithm runs in O(T(n)) steps "with high probability," by which we shall

mean that for any constant k > 0, there are constants cl > 0 and c2 > 0 such that with

probability 1 - cl/nk, the algorithm terminates in at most c2T(n) steps.

Theorem 37 With high probability, Algorithm LC takes O(lgn) steps to construct a contrac-

tion tree for a list of n elements.

Proof: We show that the algorithm terminates after (k + 1) log4/3 n iterations with probability

at least 1 - 1ink. We use an accounting scheme involving "tokens" to analyze the algorithm.

2.4. LIST CONTRACTION 85

Figure 2-3: The recursive pairing strategy operating on a list (A,B, C, D, E). Merged nodes
are shown as contours, and the nesting of contours gives the structure of the contraction tree.

Initially, a unique token resides between each pair of elements in the input list. Whenever two

list elements pick each other, we destroy the token between them. For each token destroyed,

the length of the list decreases by one, and the algorithm terminates when no token remains.

In any iteration, an existing token has probability at least 1/4 of being destroyed. Thus, after

m iterations, a token has probability at most (3/4)'" of remaining in existence. Let T be the

event that token i exists after in iterations, and let T be the event that any token remains after

m iterations. Titen the probability that any token remains after in iterations is given by

Pr{T} = Pr {TI U T2 U...U T,,)

_ Pr{T,)+Pr{T2)+...+Pr{T,,_,)

S(n-i1)()

For m = (k + 1) log1 3 n iterations, we have

Pr{T) < (n-) (3)(k/)3 1 sf "

- fk

Theorem 38 With high probability, a contraction tree constructcd by Algorithm LC on a list

of n. elements has height O(lgn).

S6 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

Figure 2-4: The operation of Algorithm LO on tihe example of Figure 2-3. The input list is
(A,,C,D,AE), and the corresponding spares are in lower case. When elements B and C pair

and merge in thle first step of the algorithm, thle spare b becomes thle root of a contraction tree
with leaves B and C to represent the compound niode BC. The spare for b is c. At the end
of the first step, thle list consisting of the elements A, b, and d represents the contracted list
(A,.BC, DE). After two more contraction steps of Algorithm LO, the input list is contracted
to a single element ABCDE, which is represented by a contraction tree whose root is c and
whose leaves are tBe elements of the input list (A, B, C, D, E).

2.4. LIST CONTRACTION 87

Proof: The height of the contraction tree is no greater than the number of iterations of

Algorithm LC. 0

We now prove that Algorithm LC is conseivative.

Theorem 39 Algorithm LC is conservative.

Proof: By covention, let the mate of an element in the input list lie in the order between th't

element and its right neighbor. The key idea is that the order of the list elements and their

spares is preserved by the merging operation, and consequently, after each contraction step, the

pointers in the contracted list correspond to disjoint paths in the original list, and the pointers

between elements and their spares also correspond to disjoint paths. By the Shortcut Lemma.

these two sets of pointers are t ach conservative with respect to the input list, and since each

set of memory accesses in a contraction step of the algorithm is a subset of one of these two

sets, the algorithm is conservative. 1

Although a contraction tree itself is tiot conservative with respect to an input list, it can

be used as a data structure in conservative algorithms. For example, contraction trees can be

used to efficiently broadcast a value to all of the elements of a list and to accumulate values

stored in each element of a list.

More generally, contraction trees are useful for performing prefix computations in a con-

servative fashion. Let V be a domain with a binary associative operation • and an identity
c. A prefix computation [16, 24, 71) on a. list with elements Zl,Z2,...,z,, in V puts the value

Yi = ZI •Z2 ... Xi in element i for each i = 1,2,... ,n.

A prefix computation on a list can be performed by a conservative, two-phase algorithm on

the contraction tree. The leaves of the contraction tree from left to right L re the elements in

the list from x, to xn. The first phase proceeds bottom up on the tree. Each leaf passes its z

value to its parent. When an internal node receives a value zj from its left child a.nd a value z,

from its right child, the node saves the value zi and passes zj . z. to its parent. When the root

receives values from its children, the second top-down rhase begins. The root passes e to its

left child and its z value to its right child. When an internal node receives a value Zp ',om its

parent, it passes zp to its left child, and passes zi . zp to its right child. When a leaf receives zp

it computes y - z,. z.

S8 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

The number of steps required by the prefix computation is proportional to the height of tile

tree, which with high probability is O(lg n). At each step, the algorithm communicates across

a set of pointers it% the contraction tree, all of which are the same distance from the leaves in

the first phase, and the same distance from the root in the second. That this computation is

performed in a conservative fashion is a consequence of the following lemma.

Theorem 40 Let CT be a contraction tree computed by Algcrthin LC on an input list L, and

suppose P is a subset of the pointers of CT. If no pointer in P is an ancestor of nnothcr pointer

in P, then P is conservative with respect to L.

Proof: An inorder traversal of CT alternately visits list elements (leaves) and their mates

(internal nodes) in the same order that tile list elements and mates appear in L. Thus, if no

pointer in P is an ancestor of another pointer in P, tile pointers in P correspond to disjoint

paths in L. By the Shortcut Lemma, any set of pointers that correspond to disjoint paths in

the list L are conservative with respect to L. 01

Algorithm LC, which constructs a contraction tree in O(Igt) steps, is a randomized a-

gorithmn. By using tile "deterministic coin tossing" technique of Cole and Vishkin [20], the

algorithm can be performed nearly as well deterministically 'pecifically, the randomized pair-

ing step can be performed deterministically in O(Ig in) st-.- on a DRAM with m processors,

where g" in is the number of times the logarithm function must. be successively applied to reduce

in to a value at most 1. The overall running time for list contraction is thus O(Ig n g° in).

As a final comment, we observe that with minor modifications, Algorithm. LC can be used

to contract circular lists with the same complexity bounds as for linear lists.

2.5 Tree contraction

This section presents a conservative tree contraction algorithm, Algorithm TC, based on the

tree contraction ideas of Miller and Reif [68]. Tile algorithm uses a recursive pairing strategy

to build a contraction tree for an input binary tree in much the same manner as Algorithm LC

does for a list. With high probability, the height of the contration tree and the number of steps

on a DRAM are both O(Ig i), where n is tile number of nodes in tile input tree. A deterministic

variant runs in O(ignlgw m) steps and produces a contraction tree of height O(Igi).

2.5. TREE CONTRACTION 89

The recursive pairing strategy for trees is illustrated in Figure 2.5 for a tree with nodes A,

B, C, D, B, and F. In the first step nodes A and B pair and merge, as do nodes C and D; the

merges are shown as contours in the figure. A new contractcd tree is formed from the unpaired

nodes B and F, and the compound nodes AB and CD In the next step of the algorithm, node

B pairs and merges with CD to form a node CDE. After two more steps the 6-node input tree

has been contracted to a single node. Notice that each node shown as a contour in the figure

is a connected subgraph of the input tree, and that the node has at most two children in the

contracted tree.

Algorithm TC represents the contours of Figure 2.5 in a contraction-tree data structure in

the same manner as Algorithm LC represents the contours of Figure 2-3. Space for the internal

nodes of the contraction tree is again provided by spares. Initially, the spare of each node in

the input tree is its mate, an unused node stored in the same processor.

We now outline Algorithm TC in more detail. (A description in pseudocode can be found

in [57].) In the first step, nodes in the input tree are paired. Tie pairing strategy has each

node pick from among its neighbors according to how many children it has. A leaf picks its

parent with probability 1. A node with exactly one child picks either its child or its parent,

each with probability 1/2. A node with two children picks either child, each with probability

1/2. The root, which has no parent, picks its children with equal probability. If two nodes pick

each other, then they merge. The merge is recorded by making the spare of the pare't in the

pair be the root of a new contraction tree. The spare of the child in the pair becomes the spare

for the root, and the parent and child themselves become the children of the root. The new

nodes and the unpaired nodes form themselves into a new tree that represents the contracted

tree, upon which the algorithm operates recursively. The contracted tree is binary because the

pairing strategy ensures that no node with two children pairs with its parent.

In the next section, we shall need to expand a contracted tree in order to describe treefix

computations recursively. Expansion consists of undoing the merges in the reverse of the order

in which they occurred. FrGom the time that a parent and child merge to the time that the

node representing their merge in the contraction tree expands, the pointers of the pair are

undisturbed. Consequently. these pointers can be used to restore the pointers of the neighbors

of the pair to the state they had immediately before the pair merged. To ensure that the merges

90 CHAPTEBR 2. DISTRIBUTED RANDOM-ACCESS MACIUNES

Figure 2-5: The recursive pairing strategy operating on a tree with nodes A,B,C,D,E, and F.
Merged ntodes are shown as contours, and the nesting of contours gives the structure of the
contraction tree.

are undone in the exact reverse order, as is assumed in the next section, it is helpful to store

int each internal node of the contraction tree the step number in which the merge took place.

In fact, the tree can be expanded by a greedy strategy without consulting the number of the

contrm'ction step at which each merge occurred.

The proof that with high probability, Algorithm TC takes O(lg n) steps to contract an input

binary tree to a single node requires three tec.'anical lemmas. The first lemma shows that in a

binary tree, the number of nodes with two children and the number of leaves are nearly equal.

The second lemma provides an elementary bound on the expectatioln of a discrete random

variable with a finite upper bound. The last lemma presents a Chernoff-type bound [18] on the

tail of a binomial distribution.

Lemma 41 Suppose T = (VE) is a rooted binary tree, and let o, V and V2 denote the sets

of nodes in T (excluding the root), with -cro, one, or two children, respcctively, and let d(r) be

the degree of the root. Then we have

I Vo = 1I11 + d(r).

0

2.5. TREE CONTRACTION 91

Le..:ma 42 Let X _ b bc a discrete ratidom variable with Czpcctc.1 value it . For to < b, we

have

P r {(X _ }w) i t - "
b-w

The final lenua presents a bound on the tall of a binomial distribution. Consider a set of t

independent Bernoulli trials, each occurring with probability p of success. The probability that

fewer than j successful trials occur is

k-0 k

The leuima bounds the probability (s, t,p) that fewer titan a successes occur in L trials when

s < 1/2 and p < 1/2.

Lemma 43 For s < t/2 and p < 1/2, we have

B (s, t, p) :5

With these lemmas we can now prove that with high probability, Algorithm TC takes O(lg -)

cteps to contract a rooted binary tree to a single node.

Theorem 44 With high proixibility, Algorithm TC takes O(lg i) contraction steps !o contmcl

a rooted binary tree of n nodes to a single node.

Proof: The proof has three parts. First, we use Lemma 41 to show that if a rooted binary

tree has JiV nodes, the expected numLar of nodes pairing with a parent in a single contraction

step is at least JVI /4. Next, we use Lemma 42 to show that the probability that at least lvi /8

nodes pair with a parent in any step is at least 1/3. Finally, we use Lemma 43 to show for any

constant k, that after a1og8/7 n steps, for some constant or > 2, the probability that the tree

has not contracted into a single node is O(1/nk).

02 CHAPTER 2. DISTRIBUTED RANDOM.ACCESS MACHINES

We first show that the expecteid number of nodes pairing with a parent is at least IVI 14,

provided that IVI > 1. A child is picked by its parent with probability 1 when Its parent is a

degree1 root, and 1/2 otherwise. Thus, x leaf pairs with its parent with probability at least

1/2, and a node (other than the root) with one child pairs with its parent with probability at

least 1/4. Let P be the number of nodes pairing with a parent. Then we have

E(P) :'o 'V11

n nd applying Lemma 41 yields the desired result:

E()> + IVI+ V21 +d(r) > ll'
4 -4

Now we show that the probability that at least IVl1/8 nodes p~ir with a parent in a single

contraction step is at least 1/3. We call such a step successful. At most half of the nodes pair

with their parents. Using Lemma ,2 with 6 IVI /2, w IVI /8, and ' >_ IVI /4, we have

Pr P _V >

Finally, we show that ih high probitbility, Algorithm TC takes O(Ig n) contraction steps

to contract the input tree to -t single node. The size of the tree after a contraction following a

successful pairing step ij at most 7/8 the size before the contraction. After log/7 n successful

steps, the tree must consist of a single node. By Lemma 43, the probability that fewer than

10s/7 n successful steps occur in 0 logs /n stepS is

D(logs/ 7 n,o log: n, 1/3) _5 2((2/3)'ae)'*/A"
= 2nk~l((2/3)'ot).

For any value k, we can choose a large enough so that D(Iogl n,a logs/7n, 1j3) = O(1/nk).

In particular, for k = 1 a value of a = 8 suffices. 0-

We now prove that Algorithm TC is communication efficient , the DRAM model.

Theorem 45 Algorithm TC is conservative.

Proof: Each node of a contracted tree is a connected subgraph of the input tree. The root of

the contraction tree that represents the subgraph is called the representative of the subgraph.

2.6. TREEFIX COMPUTATIONS 93

The representative and its spare are each either a node of the subgraph or a mate of a node of

the subgraph.

Every set of memory accesses performed by the algorithm is of one of t types. In the

first type, each representative of a subgraph communicates with its spare, if at all. In the

second type, each representative of a, subgraph communicates with the representative of one

of its children in the contracted tree. In either of these two cases, the set of memory accesses

corresponds to a set of disjoint paths in the input graph, and hence, by the Shortcot Lemma,

is conservative with respect to the input graph. 0

Tree contraction can be performed conservatively and deterministically on a DRAM with

m processors in O(ig nlg* n) steps using the deterministic coin.tossing algorithm of Cole mu.

Vishkin (20). The key idea is that in Algorithm TC, the nodes that cai; -pair form chains, sad

'y Lemma 41 these chains contain at least half the tre- edges. The chains can be oriented from

child to parent in the tree, and deterministic coin tossing can be.used to perform the pairing

step in O(g" m) steps.

2.6 Treefix computations

This section presents a generalization of the parallel prefix computation to binary trees. We

present two kinds of trvefir computations-rootfiz and kaffi-and show how they can be imple.

mented by an 0(ig tn-step conservative algorithm that uses O(n) space, where n is the number

of nodes in the input tree. As we shall see in Section 2.7, treefix computations can greatly sim-

plify the description of many parallel graph algorithms in the literature, and moreover, treefix

computations can be performed by conservative algorithms.

We begin with a definition of treefix computation.

Definition. Let V be a domain with a binary associative operation • and an identity C. Let '

be a rooted, binary tree in which each vertex i E T has an assigned input value xi E V. The

roofix problem is to compute for each vertex i E T with parent j, the output value y,- = Y' -xi,

where yi = c if i is the root. The leaffi problem is to compute for each vertex i E T with left

child j and right child k, the output value y, = " - i - yk, where y = c if i has no left child

9.1 CHAITER 2. DISTRIBUTED RANDOM.A.CCE S$ AACHINES

and yj, = r if i has no right child.

Simple examples of trcetix problems are computing the depth of each vertex in a -oo-ted

binary tree and computing the size of each subtre.. These and other examples appear in the

next section.

Like the prefix computation otn lists, treefix computtions can be performed directly on the

contraction tree. For Aimplicity, however, we describe a recursive version.

Theorem 46 Let 7' b a binary tret of n nodes on a DRAM with rn proessors. A rowtfz or

lcaffix computation can be pcrformcd on '1' by a conervative rvindorni:cd algorithm which, with

high probability, takes O(Ig n) steps, or by a conrtttv deterministic algorithm which takes

C(lg it lg" in) steps. Both algorithins use 0(1) space per node of the tree.

Proof: Both treefix computations are performed by executing a single contraction step on the

input tree T to produce a contracted tree T. Each node in T is assigned an input value. and

the treefix computation is executed recursively on T. The contracted tree TV is then expanded

to yield T once again, and the output value of each node in T is computed from the input

values of T and the output values of T'.

The algorithm for leaffix is ba.ed on each node i maintaining a value si which has the form

ai, ,bi, ci, where a;,bi,ci C 'D are elements of the domain, and the character "ii" represents

symbolically a slot to be filled in with a value. The number of slots is equal to the number of

children of the node, and each slot corresponds to a specific child. When a parent and child

pair during the course of the leaffix algorithm, the value of the child is substituted into the

corresponding slot in the value of its parent. For example, suppose node i pairs with its right

child j, where the value of i is si = aibu, mnd the value of j is s; = ajp.bj. The value sk

of the merged node k is computed from s, and sj by substituting sj into the second slot in s,

yielding the value Sk = ai,,b;, ajjb, -c. The. operations are carried out immediately so that

sk has the proper form.

The leaflix algorithm initializes each node i by si +- xi, si +- zi,,, or si +- xi u u depending

on the number of children of node i. The algorithm then proceeds as follows. At the end of

a contraction step, each node k in T' that results from the merging of parent i and child j

2.7. GRA PH ALGO]UTIIMS

computes its value sk by substituting jj into the appropriate slot of s;. Th, leaflix algorithm is

then performed recursively on T' using the s values as inputs and yielding y values as output.

(The y values contain no slots and are simply elements of the domain V.) During the expansion

step, the parent node i sets y, .- y,. Each child node j gets its output value yj by substituting

the y values of its children into the slots of sj.

In the rootfix algorithm, each node i maintains a value aj, as in. the leaflix algorithm, but

each si now has the general form -i = ua;, and the slot of a node corresponds to the node's

parent. The rootfix algorithm initializes each node i by aj +- Uzi, except for the root r which

perforins sr - zr. After the pairs have been determined for the contraction step, each node j

that is the child in a pair, and which itself has a child, substitutes sj in the appropriate slot

of its child's valte. At the end of a contraction step, each node k in T' that resulted from the

merging of par, ut i and child j computes its value by *j, - si, The rootfix, algorithm is then

performed recursively on T, yielding y values as output. During the expansion step, the parent

node i sets y3 - yk. Each child node j gets its output value yj by substituting yi into the slot

of si.

The time and space bounds claimed in the theorem are apparent by inspection. Each step

of a treefix algorithm adds only a constant amount of work to a corresponding step in the tree

contraction and expansion algorithms. The additional space required by the treefix algorithms

is the 0(1) space per node for the x, y, and s values. 3

2.7 Graph algorithms

This section presents a collection of conservative DRAM algorithms for solving graph problems.

The algorithms use two processori per edge of an input graph G = (V, E) and require only

constant extra space in each processor. Most of the algorithms use treefix computations as

subroutines.

We represent each vertex in an undirected graph G = (V, E) by a doubly linked incidence

ring of processors, one for each edge. Each element of the incidence ring contains pointers to

the next and previous elements in the ring, and one pointer for a graph edge. For each edge

(u, v) E E, the element in the incidence ring for u contains a pointer io an edge element in the

96 CHlAPTER. 2. DISTRIBUTED RANDOM.ACCESS MACHINES

incideoe ring for v, and vice versa. A lirected graph is represented in the same doubly linked

f,'Mhion, but the graph edges axe labeled with their directions.

We represent trees with arbitrary vertex degrees by an incidence ring structure as well. If the

tree is directed, each ring has a unique principal cment that points toward the root. Breaking

the incidence ring before the principal element yields the standard binary.tree representation

of the tree (39, pp. 322-333).

We now present brief descripti n; of the algorithms. The performance is given in terms of

the number of stops on a DRAM when the input representation has size n. We assume the

implicit trrt contractions in the algorithms are performed by the randomized Algorithm TC.

Deterministic bounds can be obtained by multiplying the number of steps by O(lg' in), where

ut is the number of processors. An upper bound on the time required in the DRAM model can

be obtkined by multiplying the number of steps by the load factor of the input.

Generalized treefix. Perform a treefix operation on a directed tree with arbitrary verlex

dcqree. The input values {x) are stored in the principal elements o! the tree, which is where

the output values {yj} art to be placcd. The kaffiz value at a node i whose children have values

, -y,... $y is 1=- x j. ps • .'.. Yk. Each non-prin.ipal element is assigned the identity c for

its value. A binary treefix computation performed on the binary tree representation underlying

the tree computes the desired values. Performance: O(lg n).

Tree functions. Giten a directed tree, compute for each rn"le the number of descendants,

its height, or its depth. The number of descendai-ts for each node can be computed by a leaffix

computation with • as integer addition and xi = 1 for all nodes. The height of a node can also

be computed by a leaflix computation where a . b = mnax(a + 1,b + 1), the identity is r = -I,

and xj = -1 for all nodes. 2 The depth of a node can be computed by a rootflx computation

with as addition and xi = 1 for all nodes except the root which has value 0. Performance:

O(g n).

Rooting an undirected tree. Pick a root of a tree with undirected graph pointers, and

orient the graph pointers toward the root. Form an "Eulerian tour" of the pointers of the

representation [92] by directing each element of the tree to link its incoming ring pointer with

2Technically, c = -1 is not an identity for the operation a b = max(, + 1,b + 1). Nonetheless, this leaffix
computation correctly computes the height of each node in a binary tree. Moreover, this leaflix computation also
generalizes to a directed tree with arbitrary vertex degree.

2.7. GRAPH ALGORITHMS 97

Its graph edge directed outward and its graph edge directed inward with its outgoing ring

pointer. Each graph edge is used twice in the tour, once in each direction, but each ring pointer

is used only once. Use Algorithm LC to form a contraction tree of the tour. Choose the root

of the contraction tree to be the root of the tree, and break the tour so that It begins with the

root. Use parallel prefix to number each node according to its first occurrence in the tour. Use

contraction trees to distribute the smallest value in each incidence ring to the elements of the

ring. Orient each graph edge from the larger value to the smaller. Performance: O(lg n).

Rerooting a directed tree. Given a directed tree and another distinguihed vertez k,

reorient the graph edges of the tree to point toward k. The algorithm for rooting a tree can be

used by picking k as the root instead of the root of the contraction tree, but a single treefix

computation suffices. Perform ., leaffix computation with zk = I and z, = 0 if i 0 k, and use

Boolean OR for .. Each princippl element whose leaflix value is 1 lies on the path from xk to

the root. Reverse the direction of the graph pointers of these elements. (Note: rerooting a tree

changes the principal elements.) Performance: O(lg n).

Tree-walk numberings of a binary tree. Number the nodes of a binary tree according

to lle. - they would be visited in a preorder/inorder/postorder tree walk. For each of the

walks, .11 compute yk, the number of nodes visited before the left subtree of k. Use a leafix

computation to cumpute the number si:xtk of the subtree rooted at k. We first compute the

preorder numbering. (For the purposes of these numbering algorithms, we consider the root to

be a left child.) If node k is a left child, set zk +-- 1. If node k is a right child, set Zk to the

size of its sibling subtree plus 1. A rootfix computation with .. yields Vk, which is the prcorder

numbering of node k. The inorder numbering can be computed similarly. If node k is a left

child, set xk +- 0. If k is - right child, set xk to the size of its sibling subtree plus 1. Compute Ilk

for each node using a rootfix computation with +. The inorder numbering of node k is Ilk plus

the size of its left subtree plus I The postfix numbering can be computed by setting xk 4-- 0

if node k is a left child, and by setting Xk to the size of its sibling subtree if k is a right child.

After computing Yk using a rootfix computation with +, the postfix numbering of node k is yk

plus the sizes of its two subtrees plus 1. Performance: O(Ign).

Prefix and postfix numberings of a directed tree. Number the edges of an arbitrary

directed tree according to the order they are visited in a prcorder/lostorder tree walk. The

98 CIAtHA'EIT 2. DISTRIBUTED RA NDOM.ACCESS MACHINES

problem reduces to prefix/postfix numbering on the underlying binary tree representation.

Pcrformance: O(Ign).

Diameter and center of a tree. The diameter is the length of the longest path in the tree.

A center is u vertex v such that the longest path from v to a Icaf is minimal over all vertices

in the tree. The diameter can be determined by rooting the tree and using rootfix to find the

farthest leaf from the root. Reroot the tree at this leaf. The distance from the new root to

the farthest leaf is the diameter. (This algorithm is based on an analog algorithm attributed

to J. Wennmacker [23].) A center of the tree can be determined by finding a median element

of the path that realizes the diameter. Performance: O(Ig n).

Centroid of a tree. A centroid is a vertex v such that the largest subtree with v as a leaf

is mininial over all vertices in the tree. A centroid can be determined by rooting the tree and

computing the size of each subtree. By broadcasting the size in of the tree from the root, each

graph edge in each incidence ring can determine the number of elements on the other side of

the edge. For each incidence ring, compute the maximum of these values. A vertex with the

minimuim of these maximum values is a centroid. Pcrfornance: O(lgn).

Separator of a tree. A separator [62] is a partition of the vertices of an n-vertex tree into

three sets A, B, and C, with IAI _< in, IDI = 1, and ICI < in, such that no edge of the tree

goes between a vertex in A and a vertex in C. Determine a centroid of the tree. This vertex

is the separator vertex in B. It remains to partition the remaining vertices between A and C.

For each graph edge in the incidence ring, count the number of vertices in the subtree on the

other side of the edge. Put the largest subtree in A. Use parallel prefix on the incidence ring to

compute a running sum of the sizes of the other subtrces. Put all subtrees whose prefix value

is at most 2n in C, and put the remainder in A. Performance: O(lg it).

Subexpression evaluation. Given a directed tIre in which each leaf has a value and each

internal node has an operator from {+,-,.,-), compute for cach internal node the subezpres-

aion rooted at that node. A single leaffix-like computation suffices using the ideas of Brent [15]

and Miller and Reif [68]. Performance: O(lg n).

Minimum-cost spanning forest. A spanning forest of an undirected graph G = (V, E) is

a maximal set F C E of edges that contains no cyclcs. Given an undirected graph G = (V, E)

and a cost function w : E --+ R, determine a spanning forest F such that the sum of the costs

2.7. GRAPH ALGORITHMS 9!

(troigh.,) of the edges in F is minimum. We give a conservative DIAM im)lementation of

lloruvka's algorithn, also attributed to Sollin [91, pp. 71-83). We assume without loss of gen-

er.Mity that the edge weights are distinct-otherwise, we can assign the weight of a graph edge

c between two incidence-ring elements with addresses a and b to be (w(c),max(a,b),nra c,6))

and then compare weights lexicographically. We determine F by marking edges in 0. Initially,

no edges are marked. At eaci step or the algorithm, the currently marked graph edges form

a subforest of F. Break each Incidence ring by removing a single ring pointer, and direct the

resulting linear list. At each step of the algorithl, the marked graph edges and the ring pointers

form a set {(71) of rooted trees, where the index i of the tree is the address of the root. The

algorithm proceeds as follows. For each tree Ti, use a rootfix computation to broadcast i to all

of the elements in Z.. Use & leaffix computation on T to determine an edge e E E connecting an

edge element u E 7 with avi edge element v E Ti. where i i j, with smallest weight. If no such

edge exists, the algorithm terminates. If Tj picks the same edge as Ti, the tree with smaller

index does nothing. Otherwise, mark c as a member of F, directtng it into Tj, and reroot T.

with u as the new root. Repeat this procedure urn'il the algorithm terminates. Performance:

O(lg 2 n).

Connected components. Given an undireccd input graph C = (V, E), determine a

labeling I : V --# Z such that l(v) = I(v1) if and only if v and v' are in the sahy confcctcd

component of G. The algorithm is the same as the minimum spanning tree algorithm, choosing

the weight of a graph edge a between incidence ring elements with addresses a and b to be

(max(a, b), min(a, b)). The label of a vertex is the index of its tree. Performance: O(g 2 it).

Biconnected components. Two edges of an undircctcd graph G = (V, B) are in the same

biconncctcd component if they li: on a common simple cycle. Determine a labeling I : B -+ Z

such that l(e) = l(e') if and only if e aud ea' are in the same biconncctcd component of G. We give

a conservative DRAM implementation or th, biconnectivity algorithm of Tarjan and Vishkin

(92]. We assume that the reader has -cme funiliarity with that algorithm. Find a (directed)

minimum spanning tree T = (VF) of G. Number the vertices in the minimum spanning tree

in preorder. Use leaffix computations to compute for each vertex v three values: nd(u), low(v),

and high(v). The value nd(v) is the number of descendants of v, and low(v) (high(v)) is the

lowest (highest) numbered vertex (with respect to the preorder numbering of T) that is either

100 CILA ITER 2. DISTRIBUTED RA NDOW.ACCFESS MA CHINES

L descendant of v or adjacent to a descendant of u by an edge of E - F. Build a new graph G'

where the edges of P are the vertices of C'. Let c be an% edge from u to pu), where Ipu) is the

parent of U i F. The adjacency ring for u in C acts as the adjacency ring for c in G'. Add

two kinds of edges to (7. For each edge {w, u) in B - P such that v + nd(u) _ w, add an edge

{(v,p(u)), (w,,p(w)) to C'. For each edge (v,,p(v)) of F such that v 0 I and p(v) i 1, and

low(v) < u or high(u) _ p(v) + nd(p(u)), add an edge ({(,p(u')), (p(u),p(p(v)))) to G'. It can

be verified that the representation of G' is conservative with respect to the representation of

G. Find the connected components of G'. Two edges of F are in the same block if as vertices

in G' they are in the same connected component. Finally, for each edge c = (w, u) in E - F,

let l(e) = 1((w,p(w))). 1'crforarice: OOg2 n).

Eulerian cycle. An Eulerian cycle of an undirectcd graph G = (V, B) is a cycle containing

each cdge in -B exactly once. If any vertex hax odd degree, then no Eulerian cycle exists. Form a

set of disjoint cycles of the pointers of the representation of G as in the algorithm for directing a

tree. The cycles can be merged using an algorithm similar to the minimum-cost.spanning.forest

algorithm 15, 7]. Perforinance: O(lg 2 n).

2.8 Concurrent reads and writes

This section explores the ase of concurrent reads and writes to memory in a DRAM. When

concurrent reads and writes are allowed, the definition of load must be modified so that the load

factor remains a lower bound on the time to deliver a set of messages. With the new definition

coines a new shortcut lemma. The shortcut lemma makes it possible to perform pointer-

jumping techniques similar to recursive doubling in a conservative fashion. As a consequence,

the miinimum-cost spanning forest, connected components, and biconnected components prob-

lens can be solved in O(lgn) steps by conservative algorithms. These algorithms are faster

than the corresponding exclusive.read exclusive-write algorithms from the preceding section by

a factor of Ig n.

A concurrent read or write occurs when two or more processors attempt to read or write

the same memory location in a single memory access step. We shall assume that when several

processors make requests to read the contents of a location, all of the requests are satisfied. The

situation is more complicated when several processors attempt to write to the same location.

2.8. CONCURRENT READS AND WRITES 101

We shall assume that there is some simple rule for combuaing multiple write requests to the

same location. For "xample, one of the requests may be arbitrarily chosen to succeed while the

others are denied, or the sum of the requests may be written into the location.

2.8.1 A new definition of load

A new measure of load is needed to model the implementation of concurrent reads and writes

by an underlying routing network. When several processors request to read a, location, it is only

necessary for one copy of the data in that location to cross any cut of the undo.rl, ing network.

Similarly, since multiple writes can be combined, at most one message carrying the data to be

written into any particular destination needs to cross any cut. The ol definition of the load

of a set of messages At on a cut S was the number of messages in At whose source is in S and

whose destination is in 3', or vice versa. This measure overestimates the number of messages

that must cross the cut when some of the messages have the same destination in 3, and can be

combined. Consequently, with this measure of load, the load factor is not necessarily a lower

bound on the time to deliver a set of messages. The new definition of the load of AS on a cut

S is the number of different destinations in 3 of messages originating in S, or vice versa. The

definitions of a cut, the capacity of a cut, the load factor, and a conservative algor..hm remain

the same. With the new measure of load, the load factor is a lower bound on the time required

to deliver the messages.

The change in the definition of load raises the hope that standard PRAM techniques such as

recursive doubling are conservative after all. However, returning to the example of Figure 2-1,

we see that after the fourth step, each of the first eight elements in the list points to a different

element on the other side of the cut. Thus, even with the new definition, the load on the cut

has increased from one to eight in three steps. Nevertheless, we will show that a slightly more

sophisticated pointer-jumping strategy is conservative.

2.8.2 A shortcut lemma for concurrent reads and writes

The following lemma shows that if all of the pointers into a particular processor are simultane-

ously shortcut, then the load factor does not increase. Note that unlike the original Shortcut

Lemma, the pointer b --+ c is not removed from P.

102 CHIA PTERL 2. DISTRW UTED RANDOM-ACCESS MA CHINES

Lemma 47 Suppose a data structure consists of a sct P of pointers on a sc(V of ertcices and

that P cntains a pointer b -" c. Let R = (-. b: z E a - b e P) be the set of pointers in

P into b. Then the set Q defincd by

Q = Pu (z -, c: z V,-- b E R)-R

is conservtihe with respect :o P.

Proof. We will show that load(Q,S) :5 Ioad(P,S) for any cut S of the DRAM. There are four

ways in which b and c can be assigned to the partition induced by a cut S. Two of the caes

can be eliminated by symmetry if we assume that b is on the left side. lit both of the remaining

cases, the load acrous the cut is either unchanged or diminished when all of the pointers of the

form z -- b are replaced by pointers z -o c, as shown in Figure 2.6. Note that if b and c lie on

the left side of the cut, then all of the pointers into b from the right side of the cut must be

shortcut, or the load may increase. 0

Corollary 48 Let B be a set of nodes in V that are independent with respect to P. For each

y / B let y - c(y) be a pointer out of y. Let R = (z - y : z E V y E B, z : E P) be (he set

of pointers into the nodes of B. Then the set Q of pointers defitd by

Q = Pu (-+ c(y) :X,y c V,: -, y E KR - A

is conservative with repect to P.

Proof: The proof is by induction on the number of nodes in B. 0

2.8.3 A conservative pointer jumping technique

The corollary suggests the following conservative tree contraction technique: select a set of

independent internal (non-leaf) nodes, then shortcut all of the pointers into those nodes. When

the pointers into a node (excluding the root) are shortcut, the node becomes a leaf. Thus,

the shortcutting step can reduce, but not increase, the number of internal nodes. The step ;s

repeated until every node in the tree (including the root) points to the root. Such a tree is

called a star. Note that unlike the tree contraction algorithm from Section 2.5, the number of

2.8. CONCURRENT READS AND WRITES 103

Figure 2-6: A shortcut lemm,. for concurrent reads and writes. In each of the two caes
illustrated, the load factor across the cut is either unchanged or diminished by replacing all of
the pointers of the form z - & with pointers of the form z -- c.

nodes in the tree does not decrease at each step, and the in-degree of the nodes in the tree can

grow.

It is relatively easy to find a large random independent set of internal nodes. First, each

internal node chooses to be a candidate with probability 1/2. *Next, all candidates whose

parents have also initially chosen to be candidates drop out of the running. The remaining

candidates form an independent set. At each step, every internal node except th-; root has

probability 1/4 of belonging to the set. Since the root points to itself, it will never be included.

By Lemma 42 the probability that at least 1/8 of the internal nodes (excluding the root) belong

to the independent set, and thus become leaves, is at least 1/7.

The following lemma shows that if the independent sets are found this way, then the algo-

rithm requires O(lg n) steps, with high probability.

Lemma 49 With high probability, the mndonmi:ed pointer jumping algorithm takes O(lgi)

steps to contract an i-node directed trce to a star.

Proof: The proof is nearly identical to the third parc of the proof of Theorem 44. 0

This conservative tree contraction technique can be applied when the input graph has the

doubly-linked incidence ring representation from Section 2.7. The representation of a directed

tree is itself a binary tree. After applying the tree contraction algorithm to the binary tree, all

of the elements in the representation hold pointers to the principal element on the incidence

ring of the root. Because an undirectcd tree can be rooted at any node, and any element on the

104 CIIA PTER 2. DISTRIBUTED RANDOM-ACCFSS MACHINES

incidence ring of the root can be chosen as its principal element, a star rooted at any element

in the representation of an undirected tree is conservative with respect to the representation.

2.8.4 A miniumn-cost spanning forest algorithm

In this section we present an O(Ig n).step conservative algorithm for finding a minimum-cot

spanning forest of an n-node graph. The algorithm is bated on the CR.CW PRAM minimum-

cost spanning forest algorithm of Awerbuch and Shiloach (8], which in turn is based on the

connected components algorithm of Shiloach and Vishkin [88].

A minimum.cost spanning forest is defined in Section 2.7. As in that section, we assume

without loss of generality that all edge weights are distinct, so that an input graph G = (V E)

has a unique minimum-cost spanning forest F.

The algorithm demarcates the minimum-cost spanning forest by marking edges as belonging

to F. Initially no edge. are marked. At each step of the algorithm, the currently marked edges

form a subforest of F. Each connected component of the subforcst is a tree. As in the algorithm

from Section 2.7, for each of these components, the algorithm maintains a separate directed

tree on the processors in the adjacency-ring representation of the component. However, unlike

that algorithm, the edges in the directed tree are not necessarily a subset of the ring and edge

pointers. As we shall see, each directed tree is nevertheless conservative with respect to the

adjacency-ring input representation of the corresponding component. We denote the set of

directed trees {T,), whcre the index i of the tree is the address of the root. Initially, each node

in G is an isolated component, and its directed tree is a star on the nodes of its adjacency ring.

When the algorithm terminates, each directed tree is a star on the nodes in the adjacency-ring

representation of a different connected component of F.

The algorithm proceeds in phases, each consisting of two basic steps: star-hooking and

pointer-jumping. In the star-hooking step, the lowest cost edge connecting each star in (Ti)

to another component is marked as belonging to F, and the root of the star is made a cbild

of a node in the neighboring component. The pointer-jumping step is the same as that in the

tree-contraction algorithm. The algorithm repeats these steps until {i} consists e~atirely of

stars, and none of these stars have any neighbors in G.

We now describe the star-hooking step in more detail. The first task is to determine which

2.8. CONCURRENT READS AND WRITE 105

component (if any) is adjacent to each star via the lowest-cost edge. Each processor in &

star whose edge pointer leads outside the star writes the cost of the edge to the root. Thes

concurrent writes are conibined using the min operator, so that the lowest edge cost wins. If

the star has no neighbors, then it becomes inactive. Also, if two stars select the same edge,

then the one with the lower index does nothing. Before the star is hooked into to another tree,

it is rerooted at the winning processor. 'he new root is h'joked into the neighboring tree via

its edge pointer. If the node at the end of the edge pointer is a lea, then the edge pointer is

shor.cut so that the root points to the parent of the leaf. This last operation ensures both that

the star-hooking step is conservative and that it does not increase the number of internal nodes

in (c).

The following pair of theorems show that the algorithm is conservative and that it requires

O(Ig n) phasm, with high probability.

Theorem So With high probability, the algorithm requires O(g n)-phases to flid the minimum.

cost spanning forstL of an n-node graph.

Proof: We bound the number of phases using a potenti&! function argument. The quantity

of interest is the number of internal nodes in active trees in (Ti). Initially, there is a star of

height 1 for each of the n nodes in G, so there are n internal nodes. The star-hooking step

does not increase the number of internal nodes. After star hooking there are no active stars

remaining, so every tree has height at least 2. Since roots are not included in the independent

set, in the worst case we expect 1/8 of the internal nodes to be placed in the set. By Lemma 42

the probability that ut least 1/16 of the internal nodes become leaves is at least 1/15. The

remainder of the proof is like the third part of the proof of Theorem .44. 0

Theorem 51 The algorithm is conservative.

Proof: The key to the proof is that at the beginning of ead phase, the set of directed trees,

{T.), is conservative with respect to the adjacency-ring representation of the input g-.ph.

The proof is by induction on the number of phases completed. Before the first phase, {T)

consists of a set of stars, one for each node in the input graph. Each star is conservative

with respect to the ring pointers in its adjacency ring. Now assume the inductive hypothesis.

lOG CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

The star-hooking step consists of rerootisg some stars, and hooking them into adjacent trees.

Rerooting is justified bh-ause, as we have previously observed, a star rooted at any node in

the adjacer cy-ring representation of the corresponding component is conservative with respect

to that representation. When hooking a root into a node in an adjacent tree via an edge

pointer, we must be ensure that the edge pointer is shortcut in the same way that any other

pointers into that node have been shortcut. If the node is a leaf, then it may have belonged

to the independent set in some previous pointer-jumping step. In this case, the root must

be hooked into the node's parent. If the node is not a leaf then the pointers into the node

have never been shortcut. In this case, the root must be hooked into the node via, its edge

pointer. In the pointer-jumping step, the pointers into an independent set of the nodes in {T)

are shortcut. fly Lemma 48 the resulting set of trees remains conservative with respee o the

input representation.

All communication in the algorithm is performed across edge pointers and directed tree

pointers. The edge pointers are a subset of the pointers in the input representation, and as we

have just proved, the tree pointers are conservative with respect to the represertation. 0

The algorithm can useJ as a subroutine in O(lg n).,tep algorithms for finding the connected

and biconnected components of an n-node graph. The details of the reductions are presented

in Section 2.7.

The algorithm can be made deterministic using the deterministic coin-tossing algorithm of

Cole and Vishkin [20]. The goal is to find a large independent set of non-root internal nodes

without using randomization. Let k be the number of internal Aes, The first step is to

remove the leaves of {Ti) so that k nodes remain. Next, remove the roo'-. Since every tree has

height at least 1 after the removal of the leaves, at least k/2 nodes are left. Next, remove any

remaining nodes with 2 or more children. Since there are k/2 edges (including the self-pointers

at the roots), this step removes at most k/4 nodes. At this point the graph consists of chains

only of chains. The deterministic coin-tossing technique can be used to select an independent

set of at least k/12 nodes in O(1g" m) steps, where m is the number of processors in the DRAM.

Thus, the time for the algorithm is O(lgnlgi m).

2.9. REMARKS 107

2.9 Remarks

This section offers a perspective on the DRAM model. We explore the analogy betwen PRAM's

and universal networks on the one hand, and DAbM's and volume-universal networks on

the other. We then discuss the issue of how data structures can be efficiently embedded in

DRAM's-a problem not faced in the PRAM model. We also suggest how one might define

the load factor for data structures other than graphs, such as matrices. Finally, we offer some

comments on how sonic of our definitions and techniques might be extended or generalized.

The literature contains a large body of results concerning universal networks, such as the

Boolean hypercube (96]. Universal networks are capable of simulating any PRAM .rogram

with at most polylogarithinic degradation i time (see, for example, the simulation (35] of an

EREW-PRAM on a butterfly network). In light of this work, one might wonder why the DRAM

model should be studied at all.

A potential problem with universal networks is that they may .be difficult to physically con-

struct on a large scale. The number of external connections (pins) on r. packaging unit (chip,

board, rack, cabinet) of an electronic system is typically much smaller tht the number of com-

ponents that the packaging unit contains, and can be made larger only with great cost. When

& network is physicully constructed, each packaging unit contains a subs., of the processors of

the network, and thus determines a cut of the network. For a universal network, the capacity

of every cut must be nearly as large as the number of processors on the smaller side of the cut;

otherwise, the load.factor lower bound would make it impossible to perform certain memory

accesses in polylogarithmic time. Thus, when a universal network is physic;u.y constructed,

the number of pins on a packaging unit must be nearly as large as the number of processors

in the unit. Consequently, if all the pin constraints are met, a packaging unit cannot contain

as many processors as might otherwise fit. Alternatively, if each packaging unit contains its

full -omplement of processors, then pin limitations preclude the universal network front being

assembled.

The impact of pin constraints can be modeled theoretically in the three-dizlensional VLSI

model [.51, 56] where hardware cost is measured by volume and the pinboundedness of a region

is measured by its surface area. In this model, the largest universal network that can fit in a

given volume V has only about V2/3 nodes. In the two-dimensional VLSI model [93], where

108 CHAPTER 2. DISTRIBUTED RANDOM.ACCESS MACHINES

pinboundedness is imsured by perimeter, the bound is even worse.

Since the density of processors in a physical implementation of a universal network is low,

it is natural to wonder whether there are other networks that make more efficient use of hard.

ware. Recently, it hu been shown that fat-tres 129, 561 are tuch a class of "volume-universal"

networks. A fat-tree of volume V can simulate any other network of comparable volume with

only polylogarithmic degradation in time. (Figure 2-7 shows an area-universal fat-tree.) Thus,

a fat-tree of volume V can efficiently simulate not only the universal networks with the same

volume, but also sonic networks with almost V nodes. A key component in the proof that

fat-trees are volume.universal is an algorithm for routing a set of messages on a fat-tree in time

that is at most a polylogarithmic factor larger than the load factor.

With a suitable assignment of capacitles to cuts, the DRAM can abstract the essential

communication characteristics of volume and area-universal networks without relying in detail

on any particular network. Much as thn PRAM can be viewed as an alstraction of a hypercube,

in that algorithms for a PRAM can be implemented on a. hypercube with only polylogarithmic

performance degradation, the DRAM can be viewed as an abstraction of a volume or area-

universal network. Fast, communication.efficient algorithms on a DRAM with the appropriate

cut capacities translate directly to fast, conuuunication-efficient algorithms on, for example, a

fat-tree.

We now turn to the problem of embedding data structures in DRAM's, a problem that

must be faced by users of conservative algorithms if the algorithms are to run quickly. In

general, the problem of determining the best embedding for an arbitrary data structure is NP-

complete, but for many common situations, good embeddings can be found. Moreover, there

are many situations in which the input graph structure ;s simple and known a priori, and a

good embedding may be easy to construct.

To illustrate how the embedding problem can be solved in certain practical situations,

consider the class of DRAM's whose cut capacities correspond to area-universal fat-trees. For

this class of DRAM's, the recursive structure of the underlying fat-tree network suggests that a

divide-and.conquer approach be taken. For example, a subproblem in switch-level simulation of

a VLSI circuit is the finding of electrically equivalent po~tions of the circuit. A naive divide. and-

conquer embedding of the circuit on the -%t-tree would yield small load factors for every cut.

2.9. REMARKS 109

Figure 2-7: A fat-tree network. An area-universal fat-tree, like the one shown, is capable of
efficiently simulating any other network of comparable area. Fat-trees are well modeled by
distributed random-access machines.

110 C IAPTER 2. DISTRIBUTED RANDOM-ACCF SS MACHINES

Thus, our conservative connected-components algorithm would never cause undue congestion

in communicating messages in the underlying network, and the algorithmn would run as fast as

on an expensive, high-bandwidth network.

For some graphs, it can be proved that divide and conquer yields near-optimal embeddings

on a fat-tree. Specifically, graphs for which a good separtior theorem 162] exists can be embeL-

ded well. Examples include meshes, trees, planar graphs, and multigrids. Situations in which a

mesh might be used include systolic array computation [44, 55) and image processing. Planar

graphs and multigrids arise from the solution of sparse linear systems of equations based on

tle finite.lement method. Consequently, conservative DRAM algorithms operating on good

emibeddings of these graphs would run fast on a fat-tree.

The algorithms presented in this chapter operate primarily on graphs for which there is a

natural definition of load factor. It is also possible to define the load factor of a data structure

that contains no explicit pointers. For example, it is natural to superimpose a mesh on the

matrix, as is suitable for systolic array computation [44, 55], and the load factor of the matrix

can be defined as the load factor of the mesh.

For some algorithms, the running time may be better characterized as a function of the load

factor of the output titan the load factor of the input. As an example, consider the problem

of sorting a linear list of elements. A natural question to ask is whether a list can be sorted

in a polylogarithmic number of steps where at each step, the load factor is bounded by the

load factor induced by the linear list together with the permutation determined by the sorted

output. Such a sorting algorithm is known for fat-trees [36], but whether such an algorithm

exists for general DRAM's is an open question.

Whereas the Shortcut Lemma presented in this chapter holds for any network, for particular

networks, other shortcut lemmas may aold. For example, another shortcut lemma for fat-trees

is used in [64] to show that an optimal reordering of a linear list in a fat-tree can be determined

efficiently by a conservative algorithm on the fat-tree.

As a final comment, we note that the notion of a conservative aligorithmn may well be too

conservative. As a practical matter, it is probably not worth worrying whether every set of

memory accesses is conservative with respect to the input, as long as the load factor of memory

accesses is not much greater than the input load factor. For example, a contraction tree is not

2.9. REMARKS 111

conservative with respect to its input tree (though the levels of the contraction tree are), but

the load factor of the contraction tree is at most O(fg n) times the input load factor. Algorithms

with this looser bound are somewhat easier to code because of the relaxed constraint, and they

should perform comparably.

112 CIA PTER 2. DISTII? TED RA NDOMN-ACCESSAAOHINE-S

Chapter 3

Work-preserving emulations

3.1 Introduction

In this chaptet, we study the problem of emulating an NG'node guest network G = (Va, EG)

on an Nil-node hoet network 1 = (VI, Ell) where Nil 5 NG. Our goal is to emulate To steps

of any computation on G in Ti, = STG steps on It where S (the slowdown of the emulation) is

as small as possible.

The slowdown of the emulation must always be at least as large as Nc/N,, since G has

NO/NH times as many processors as does H. If S = O(Na/NII), then we say that the emulation

is work-preserving because then the total work (i.e., the processor-time product) performed by

the emulating network (IVtI = T,,NI,) is within a constant factor of the work performed by the

guest network (IVG = ToNe). Such emulations achieve optimal speedup (to within a constant

factor) over sequential emulations of G since they use Nil processors to solve a problem O(Nil)

times faster than is possible with a single processor.

More generally, we say that there is a work-preserving emulation of a class of networks Q

by a class of networks *t with slowdown S(N) if for every N and T, we can emulate any T

steps of any S(N)N-node network in 9 in O(S(N)T) steps on any N-node network in Xf. If

S(N) = O(logf N) for some constant a, then we say that the emulation is NC work.preserving

since every step of G can be emulated in 0(log N) steps of ff. If S(N) = O(NO) for some

This chapter describes joint research with Richard Koch, Tom Leighton, Satish Rao, and Arnold Rosenberg
[40J.

113

1141 CIIAPTFEI 3. WORK.'RFSERVING EMUiIATilONS

constant ck, then, we say that the emulation is polynornial time work-pr ecrving, and so on. In

the special case that S(N) = 0(I), we say that the emulation is refal-tine. Real.tinve emulations

are the hardest to obtain since we require the host network to emulate a guest network of the

same size with constant slowdown.

As a simple example, let 9 be the class of linear arrays, and f be the class of all bounded-

degree connected networks. It is well known [87) that an N-node linear array can bt embedded

one-to.one in any connected bounded.degree N-node network with constant dilation and con-

gestion. (By an embelding of a graph G into a graph 11, we mean a mapping , : G 1!

that maps the nodes of C to the nodes of H and the edges of G to paths in ff. The dilation

of an embedding is the length of the longest path (c) corresponding to an edge of G. The

congestion of an embedding is the largest number of paths {c) crossing a single edge of 11.

The load of an embedding is the maximum number of nodes of G mapped to a single node of

1I. In a one-to-one embedding, the load is 1.) Hence any N-node bounded degree connected

network It can emulate ainy N-node linear array with constant slowdown, and thus there is a

real-time emulation of the class Cs by the class Xt.

As another simple example, consider the more interesting problem of emulating a butterfly

on a linear array. We will prove that the clhs of butterflies cannot be real-time emulated by

tho class of linear arrays. (This should come as no surprise, although the proof is not entirely

trivial.) However, there is a simple work-preserving emulation of the class of butterflies by the

class of linear arrays with slowdown 21V. In particular, consider an N2N.node butterfly with

nodes and edges

V = {(i,w)1l _< i _ N,w E {0, 1}N), and

E {((i, w), (e, w'))Ii' = + 1, ul = w or w= 0)),

where 0Q) denotes w except that the ith bit is changed. Then by mapping the 2 N nodes of the

form (i, t) (where w E {, 1 'N) to the ith node of the linear array, an N-node linear array can

emulate an N2N-node butterfly with 2N slowdown.

Seeing this elementary example, one is tempted to ask if there are faster work-preserving

emulations of a butterfly on a linear array. In other words, can we emulate a smaller butterfly

(say with polynomial blowup) in a work-preserving fashion on a linear array? Although the

proof is not obvious, the answer is no. There is no polynomial-time work preserving emulation

3.1. INTRODUCTION 115

of the class of butterflies by the class of linear arrays. Any such emulation requires exponential

slowdown. Alternatively, we might wonder if a linear array can emulate any bounded.degree

network in a work-preserving fashion given enough slowdown. Again, the answer is no. Al.

though the linear array can emulate a butterfly in a work-preserving fashion, it cannot emulate

any expander, no matter how much blowup is allowed. In fact, by combining these results

we can conclude that even a butterfly is not sufficiently powerful to emulate an expander In a

work-preserving fashion.

We also consider emulations that are not work-preserving. Such emulations are (by defi-

udtion) Inefficient, and we define the inefficiency of such an emulation to be I = WV1/I'c. In

these terms, an emulation is work-preserving if it has constant inefficiency. Many of our bounds

will reflect tradeoffs between slowdown and inefficiency. In general,

S
C

where C = No/NH is the contracion of an emulation.

3.1.1 The motivation

There are several good reasons for studying the problem of emulating one network on another

in a work-preserving fashion. First, this kind of analysis gives us an excellent means by which to

compare the computational power of one network relative to that of another. More importantly,

it gives us an automatic way to compile and run algorithms designed for one kind of parallel

architecture without loss of efficiency on another. This is provided, of course, that the ratio

of the size of the problem to the size of the machine is large enough. For example, we have

already seen that a. small linear array (which has a very simple structure) is just as efficient in

terms of work as a very large butterfly (which has a more complicated structure).

More generally, the study of work-preserving emulations lies at the heart of efficient parallel

computing. Indeed, o're of the central problems in efficient parallel computing is the task of

mapping a collection of processes linked by precedence and/or communication constraints onto

the processors and routing network of a parallel machine so that

1. the processing load imposed on the processors is balanced,

2. the communication between processors can be handled efficiently, and

116 CHAPTER 3. WORK-PRESERVING EMULATIONS

;. the computation and communication can be scheduled so that the necessary inputs for a

process are available where and when the process is f heduled to be computed.

It other words, we would like to schedule the communication and computation in a way that

takes maximum advantage of the available hardware to minimize the completion time of the

job.

In general, we can model the computation to be performed by a DAG. Each node of the

DAG represents a process and each directed edge (u, v) represents a communication that must

take place between u and v. Typically, this communication represents data output from u

after u is completed which is to be input to v before v is started. The parallel machine can

be modeled as an undirected network. The nodes of the network correspond to processors,

and the edges correspor," o communication links between processors (and/or their associated

memories). The implementation of the computation to be performed on the paralle machine

then corresponds to an embedding of the DAG in the network so that nodes of the DAG are

mapped to nodes of the network and so that edges of the DAG are mapped to paths in the

network. We may also need to constru-t a schedule that specifies the communication and

computation of the DAG that is being performed during each step of the network. This will be

particularly important if the paralle; machine is synchronous.

In many applications, the DAG possesses a very natural structure. For example, typical

DAGs encountered in practire are derivatives of a binary tree, array, butterfly, or shuffle.

exchange graph. This is often due to the fact that the DAG is associated with an algorithm

whose inherent underlying structure is a tree or array (as is the case for many problems in

numerical analysis and linear algebra) or a butterfly or shuffle.exchange graph (as is the case

for Fourier Transform and data manipulation problems). Alternatively, it could be that the

DAG was constructed from an algorithm specifically designed for use on one of these common

parallel architectures.

Similarly, parallel networks also %end to be very naturally structured and typically are

configured as trees, arrays, butterflies, and the like. Hence, the mapping problem often consists

of emulating TG steps of one No-node network (represented as a TqNG-node DAG) on an N,,-

node network with a different structure. Ideally, we would like to perform the computation in

O(TcNc/Nu) steps, which is precisely the problem of finding a work-preserving emulation of

3.1. INTRODUCTION 117

one network on another.

In practice, the guest network can be iubstantially larger than the host network. For

example, it is not uncommon for a parallel machine with between 8 and 256 processors to

be emulating arrAy-based computations involving hundreds of thousands of data points. In

such examples, even work-preserving emulations with exponential slowdown may be within the

scope of practicality. lndeed, the most important feature of the computation is that it be

work.preserving.

3.1.2 A closer look at the computational model

If we can find an embedding of a graph G into •L graph 11 with constant dilation, congestion, and

load, then it is fairly clear that It can emulate G with constant slowdown. Is the reverse true?

Somewhat surprisingly, it is not. For example, Bhatt, Chung, Hong, Leighton and Ro6enberg

(I1] proved that any embedding of an N-node mesh into an N-node butterfly with constant load

requires dilation fl(log N), the worst possible. At first glance, it might seem that this result

implies that any emulation of an Ni-node mesh by and N-node butterfly must have slowdown

at least O(log N). However, in this chapter we show that an N-node butterfly can emulate

T-steps of an N-node mesh in O(Tloglog N) steps. In (40) we present % more sophisticated

emulation scheme that requires only O(T) steps.

In order to understand how such a contradictory result is possible, we need to take a closer

look at what it means to emulate TG steps of one network in T1 steps on another. We start

by modeling the computation performed by the guest network G as a pebble DAG r. In

particular, we will have a pebble for every node-time pair (u, t) where v is a node of G and

0 < _ T. (Pairs of the form (v,0) correspond to inputs.) In fact, we may have many pebbles

associated with a single pair (v,t), which will correspond to the same computation being done

more than once. (This is the trick that allows us to emulate a mesh on a butterfly in real

time.) To compute any pebble labeled (v, t), we need as inputs pebbles labeled (v, t - 1) and

(vI, t - 1), (v2 , t - 1),... (vkt, t- 1), where vj, v2,..., vk are the neighbors of v in G. We use the

directed edges of r to denote this dependence in the usual way.

Because many pebbles can have the same label, there are many DAGs r associated with any

graph G. In order to emulate G on If, we only need to find an embedding and an acccmpanying

118 CIHAPTER 3. IVOIUK-I)RESERYJNG EMULATIONS

schedule of one of these DAGs in It. Once an embedding and schedule of a DAG is fixed, the

emulation proceeds in a standard way. lit particular, during each step of the computation, x

node of II can

1. make a Copy of a single pebble that it contains,

2. send a single pebble to a neighbor, and/or

3. create a pebble with label (v, t) provided that it already contains input pebbles with l-abels
C, I - 1) mid- U l' .1t v lb,. ., kt- I).

Initially, we will allow a node of 11 to have access to any input, although to use any of

these inputs in a meaningful way will take timr. By the end of the emulation, we must have

computed pebbles with all labels of the forin (v,To). (For purposes of simplicity, we will use a

pebble to denote the state of &. processor of G at some particular time, as described above. A

more general interpretation would be to use a pebble to denote one of many items (e.g., data

and/or functions) stored within a processor. All of our results hold under the more general

interpretation, although some of the emulation results become more complicated.)

ly allowing several pebbles to have the same label, we dramatically increase the number

of possible computation DAGs r that correspond to & T0-step computation of G. This makes

it more likely that we can find a computation that can be efficiently emulated on some host

network H (e.g., as is the case with emulating a mesh on a butterfly), but it also makes the task

of proving lower bounds much more difficult. For example, in order to prove that H cannot

enulate G in real-time, we must show that for some To, there is no DAG r associated with aL

Tc-step computation of C that can be emulated in O(T0) steps on It. This can be a formidable

task since r can look very different than 0. Indeed, at the very least, we must choose TG to

be large since by allowing redundant computations of pebbles, any 0(1) steps of any N-node

bounded-degree graph G can be computed in 0(1) steps on any N-node graph H. (This is

because if T = 0(1), then any output pebble can only depend on 0(l) input pebbles, which

can be redundantly computed locally since every node of H is assumed to have access to all

input pebbles.)

Note that when we prove a lower bound on the ability of a graph H to emulate a graph

G, it does not necessarily mean that H cannot effectively compute the same result as does G

3.1. INTRODUMJ70N 119

(possibly by using a different algorithm, for example). Rather, we are proving lower bounds

on the ability of II to perform the same step-hy-step tomputations as C when G Is used in

a general purpose way. lHence the term ernulation. We suspect that our pebbling model is

probably the most general model in which we could hope to prove lower bounds.

Throughout the chapter we will make use of the fact that if there is an embedding of G

in It with congestion c, dilation d, and load 1, then there is an emulation of C by ft with

slowdown 0(1 + c + d). The follows from the proof in Section 1.2 that for any set of packets

whose paths have congestion c and dilation d, there is a schedule of length 0(c + d) in which

at most one packet traverses each edge at each step. When H is an iaray, tree, butterfly, or

shuMe-exchange graph, the schedule can be computed on-line using the algorithm for layeted

networks from Section 1.3.

3.1.3 Our results

The technical portion of this chapter is divided into five sections. We commence in Section 3.2

with some general techniques for establishing the existence or nonexistence of a work-preserving

emulation. In particular, we describe two general methods for proving lower bounds on the

slowdown of a work-preserving emulation. The first method iF based on dilation considerations

and appears in Section 3.2.1. As an application of this method, we prove that any class of low

diamnter networks (such as complete binary trees) cannot be emulated in real time on any class

of networks that has poor expansion properties (such as arrays of bounded dimension).

The second method is based on congestion properties and is presented in Section 3.2.2.

Here we describe a gev.eral method for proving that a. work-preserving emulation requires a

large amount of time, or that it is impossible altogether. As an example, we prove that ally

work-preserving emulation of a butterfly on an array of bounded-dimension requires exponential

time, and that it is not possible to emulate an expander on a butterfly in work-preserving

fashion. These results provide a curious contrast between the power of a linear array, butterfly,

and an expander. By most standards, it would seem that a. butterfly is closer in power to an

expander than it is to a linear array. Yet a linear array can emulate a butterfly in a work-

preserving fashion, but a butterfly (or most any non-expander) cannot emulate an expander in

a work-preserving fashion.

120 CiAPTER 3. WORKPRESERVING EMULATIONS

I Sections 3.3 1 *,rough 3.0, we focus on the special case of emulations by arrays, complete
dhary trees, butterilies, and thiii.qe-exchange graphs, respectively. In Section 3.3, we prove

tight b ;:ds v. the slowdown required for an array to emulate a tree. array or butterfly. in

Section ,3.4, we prove that there is a work-preserving emulation of bounded-degree trees by

,completw binary trees with O(loglogN) slowdown. We also give evidence, but no proof, that

there is no corrco'ndihg real-time emulation for this class. (Proving that a complete binary

tree cannot emulate a complete ternary tree in real.time is one of several challengir.g questions

left open in this chapter.)

In Section 3., we show that a. N-nodo butterfly can emulate an N-node mesh with slow.

down O(loglog N). It 1,10] we show that the emulation can be performed in real-time. This

result is interesting because any one-to.otte embedding of an array (with dimension 2 or more)

iii a butterfly requires 1(logA') dilation (11), which suggests that any emulation must require

slowdown ilog V). The result takes on addied significance given the fact that many parallel

numerical algorithms are array-based while several parallel machines are butterfly-bued.

We also desc:ibe a simple constant.congestion embedding of an N-node shuffle-exchange

graph in an N-node butterfly in Section 3.6. This result has several important consequences.

First, it can he used to provide an elementary proof that the N-node shuffle-exchange graph can

be laid out in O(N 21 Jog2 N) area and in O(N 312/1lo3j 2 N) volume. Both results are opinal.

The area bound was known previously [38], but the proof was much more difficult (as were

the proofs for several suboptimal layouts for the shuffle-exchange graph (34, 48, 50, 90]). The

3.d layout bound is new and was not obtainable by any of the previous approaches to the 2-d

layout problem. Second, we apply the result to derive an O(log N).s!owdown work-preserving

emulation of the shuffle-exchange graph on the butterfly.

In Section 3.6, we prove the reverse, namely, that there is an O(logN).slowdown work-

preserving emulation of the butterfly on the shuflle-exchange graph. Taken together, these

results come very close to resolving a long open question concerning whether or not the butterfly

and shuffle-exchange graph are computationally equivalent. In particular, we show that up to

NC emulations, the butterfly and shuffle-exchange graphs are equivalent in a work-preserving

sense. Thus, for many problems, they can be considered to be computationally equivalent.

As n. consequence of the emulations it. Section 3.6, we also obtain a real-time emulation

3.2. LOWER BOUNDS 121

of bounded-degree arrays in the shume.exchange graph, and we show how to sort N numbers

with high probability in O(log N) steps on an N-node shufle.excharge graph. Although the

proof of the sorting bound is elementary, it resolves an open queStion concerning the difficulty

of randomized sorting algorithms on the shufle.cxchange graph. Previously, such an algorithm

was known for the butterfly (53, T6, 8.1 but that algorithm made crucial use of the re-ursive

structure of the butterfly, a structure not present in a shufle-exchange graph.

3.1.4 Previous work

There has been a great deal of previous work on graph embedding$ with the intent of showing

that one network can or can't emulate another network efficiently [11, 12, 13, 28, 53, 80]. Many

of the results were positive and proved things like "all N-node binary trees can be emulated in

constant time on an N-node hypercube." There were also some negative results, but because

of the lack of a good model, their significance is now less clear. For example, even though an

embedding of a mesh into a butterfly requires dilation fl(log N), we now find that a butterfly

can emulate a mesh with constant slowdown,

The notion of work-preserving emulations In PRAM models has previously been studied

[42, 67] and served to motivate this work. Related problems of scheduling computations on

fixed-connection networks have also been studied 172].

3.2 Lower bounds

In this section we present lower bounds on slowdown and inefficiency. Loosely speaking, these

lower bounds apply when the guest graph expands faster than the host graph. The first lower

bound can be used to show that any emulation of a complete binary tree by a linear array has

slowdown fl(NII/ log Nil). The second can be used to show that a butterfly cannot perform

a work-preserving emulation of an expander graph, that any work-preserving emulation of a

butterfly by a linear array H requires slowdown at least 2fl(NH), and that any work-preserving

emulation of a k + 1-dimensional mesh by a k-dimensional mesh If requires slowdown at least

fl(Nfft). All of these lower bounds on slowdown are tight.

Before proving the lower bounds, we need to introduce some notation. For an undirected

122 CHAPTEIR 3. WORK-PRESERVING EMULATIONS

graph C = (.6), let 6(uv) be the length (number of edges) of the shortest path between

nodes u and v in G. Let /o(u,i) = (v e V16(u,u) _ i) be the set of nodes within a distance i

of u in G and let bc(u, i) = JBC(u, i)j. We call bo the growth function of G.

3.2.1 Distance-based lower bound

The following theorem shows that if the guest graph grows faster than the ho6t graph, then

any emulation of the guest by the host must be slow.

Theorem 52 Let It = (VI, Ell) b an Nil.node host graph and G = (VO, Ec) be an No-node

gucst graph, and suppose tha thcre arc intcgrs rj, and TO such that

TN

maEx hit) l

Then any emulation of TG > vro steps of C by It has slotedown

S > (r,, + 1)/2ro.

Proof: The basic idea is to find a sequence of To/TG pebbles in any TG-step pebble DAG of G

such that each pair of pebbles is separated by at most rG guest time steps but are created in H

at least rl host time steps apart. As we shall see, such a sequence exists only if the slowdown

S = TII/TG is at least (T! + 1)/2rG.

We start the sequence with the last pabble created by 11. Suppose that at time T11 some

node uo E V11 creates a pebble for DAG node (vo,to), where to = To. The pebble for (Vo,to)

cannot be -ceated by H until pebbles for all of its predecesors in the DAG are created. In

particular, there are at least FjZI bG(vo,j) precedessors for time steps tO-T G through to- 1. We

want to show that the pebble for at least one of these predecessors must have been created by

the host graph before time T1 -T"!j. The pebble for every predecessor of (vo,to) that is created

at distance i from uo in H inust be created at or before time T,1 -i. Thus at most E'M bH(uo, i)

pebbles for predecessors of (Vo, to) are created by 11 between time steps T11 - 11 and Tf - 1.

Since maxviz Zj 'ff bi,(u, i) < minV 0 Zj'I bc(v,j), the pebble for some predecessor (vi, il),

tI _ TG - TrG, must be created by the host graph at or before time T11 - (Tu + 1).

3.2. LOWER BOUNDS 123

We can repeat tle argument to find a pebble for a predecessor (2, 2), tN >_ To - 2ro, of

(vl, 1) that must be created by the host at or before time T11 -2(ri + 1), and so on. Eventually

we obtain a pebble (VA, 1k) such that TO > k > To - kro. This pebble must be created by the

host at or before time Tir - k(r,, + 1). We assume that input pebbles are created at host time

step 0, and that the emulation begins with time step 1. Thus, TI, - k(r l + 1) >_ 0. Combining

these inequalities, we have

T111To > (r/1 + 1)/2rT

for To 2_ To. 0

Corollary 53 Any such arnulation has inefficiency

S> flr1N1

Corollary 54 Any emulation of a complete binary troe, G, by a k-dimensional mesh, 11, has

slowdown at least fl ((NGI logk N0G)I/(k+fl).

Proof: Apply Theorem 52 with To = O(!og No), and ryt = 0 ((NologNo)I/(k+l)). Q

3.2.2 Congestion-based lower bound

The second lower bound requi;es a little more notation. Let G = (V, E) be an undirected graph

as before. For a set U C V, we define the i-neighborhood of U to be the set of nodes within a

distance i of some node in II, Mf(U) = Uueuo(u, i) - U. We define an (R, f(R)).decomposition

of G to be a partition of V linto IVIIR sets of nodes (regions) such that each contains R nodes

and has a 1-neighborhood of size at most f(R).

The last graph parameter that we need, zo, is best described in terms of a simple game.

The player starts by choosing a nodes of a connected graph G and placing them in a bag. The

player is given a collection of ca, 0 _< e < 1, tokens to play with. The game is played in rounds,

each consisting of two steps. In the firi.t step, all of the neighbors of the nodes in the bag are

added to the bag. In t"e second step, the player may exchange tokens for nodes in the bag on

a one-for-one basis. Let Xi be the set of nodes in the bag at the end of round i, and let I/i be

the set of nodes removed in the second step of round i. Then Xi is given', by the recurrence

Xi = Xj- 1 + A(4(Xi- 1) - Yi. The game ends when the number of nodes in the bag exceeds

121 CIAPTER 3. WORK-PRESERVING EMULATIONS

it capacity, c, at the end of a step, where c < No. If k is the number of rounds played, then

IXd < c for i < k, IXi > c for i = k, and E=i I11I < ca. The goal is to play as many rounds

as possible. Let :o(a,c,c) be an uppi- hound that is non-increasing in a on the length of the

longest possible game.

Theorem 55 Suppose that 11 = (V1,E11) is an Nit-node host graph with an (Rf(R))-

dccompostion, and that C = (VO, Eg) is an X 0 -node guest graph. Let

Iax{t:_0(1, , - -G (" I X
4' 4)'k N,, T'2 f

Then for any emulation of G by 11 where TG > 3fi,

t m 32P1(R)' DORY

Proof: The basic strategy is to show that either the host spends a lot of time passing pebbles

across the perimeters of the regions in the (R, f(R)).decomposition, or the host spends a lot

of time creating pebbles. We will break the To guest time steps into blocks of 3#3 consecutive

steps and classify every block as either an importer or a creator. If a block is an importer, then

many pebbles for the block cross region perimeters. If a block is a creator, then some region

creates many pebbles for the block. If the majority of the blocks are importers, then the time

required by the host to pass pebbles across the perimeters of the regions large. Otherwise, the

time required to create the pebbles is large.

Before we can get started we need one more piece of notation. For each node v in C there is

at least one pebble created by / for each guest time step i between I and TG. The first pebble

created for v for time t is called the f-primary pebble for v. For each value of t there are exactly

No t-primary pebbles. The i-primary pebbles are ordered according to the order in which they

are created by 11, witl ties broken arbitrarily. We call the first 3N0 /4 t-primary pebbles the

t-early pebbles and the last 3NG/4 the f-late pebbles.

We begin with the definition an importer block. Consider a block from step t to t - 39 + 1.

The average number of i-early pebbles created by each of the NnI/R regions in the decomposition

of HI is at least p = 3NoR/4NII. We say that a region is f-busy if it creates at least p/2 i-early

3.2. LOWER BOUNDS 125

pebbles. We say that a (-early pebble is t-busy if it is created by a 1-busy region. At least

half of the (-early pebbles are t-busy. Thus, there are at least 3No/8 t.busy pebbles. Suppose

that a i-busy region creates s > p/2 1-busy pebbles. We say that the region is an importer if

it imports at least s/2 pebbles for time steps between i - 1 and i - 2/3. We say that a block

is an importer if every t.busy region is an importer, or if some region imports at least 3NG/16

pebbles for time steps between f - 1 and t - 2P3. In a importer block, a total of at least 3No/16

pebbles for time steps between L - I and t - 2/3 are imported by all of the regions.

If at least half of the T72/3 blocks are importers, then we can find a lower bound on

inefficiency by computing the time required to import pebbles. In this case, the total number

of pebbles imported by all of the importer blocks is at least TONG/323. The host time required

to import these pebbles is at least TH _ TcNcR/32/3N,,f(R), because at each host tfime step,

each of the N,,/R regions can import at most f(R) pebbles. In tlhis case,

1>: R!32/3f(R).

As we shall see, if a block is not an importer then some region must create many pebbles for

the block. Hence the name creator. In a creator block there must be some f-busy region R that

creates j 2_ p/2 i-busy pebbles but imi orts fewer titan s/2 pebbles for time steps between t - 1

and t - 2P3. The t-busy pebbles created by X cannot be created until pebbles for all of their

predecessors in the pebble DAG are created. Since zG(3, 1/2, Na/2) :_ .o(p/ 2,1/2,No/2) ./,,
'R imports at most s/2 pebbles for time steps between t - 1 and i - :0(3, 1/2,No/2). Thus

R. must create at least Na/2 pebbles for time step t - :G(3,1/2, No/2). Furthermore, since R

imports at most 3NG/16 pebbles for time steps between t - I and t - 2/3, it must create at least

5Na/16 pebbles for every time step between t - -G(s, 1/2, ?G/2) and t - 2P. For each of these

time steps, at least NG/16 of the pebbles are created for nodes whose (t - 2/)-primary pebbles

are (t - 2/).late pebbles. We call these pebbles the descendant pebbles.

We have chosen the descendant pebbles so that none are created by 1! until all of the

descendant pebbles for previous blocks have been created. The early pebbles for all time steps

at or before t-23-z(NA/4,0,3N./,l) must be created before the (1-23)-late pebbles because

3NG/4 nodes in C lie within a distance zG(No/4, 0, 3No/4) of the nodes corresponding to the

first G/ 4 (L - 2/)-primary pebbles. Since za(No/I,,O,3NA/4) _< fl, the eary pebbles for

previous blocks must be created before the (t - 2)-late pebbles. Furthermore, the (t- 2/3).late

126 CHA PTER 3. IVORK-PRESEIWING EM ULATIONS

pebbles must be created before the descendant pebbles, which in turn must be created before

the t-busy pebbles for R.

If at least half of the blocks are creators, then we can derive a lower bound on inefficiency

by summing the time to create the descendant pebbles for each of the creator blocks. For each

of To/6fl creator blocks, at least Pfno/16 descendant pebbles are created by a single region.

The host time for each block is at least ONG/16R. The host time for all of the creator blocks

is at least ToNoG96R and the inefficiency is at least

I >_ Nn/96R.

Combining the two cases proves the theorem. 0

Corollary 56 A k-dimensional mesh H cannot perform a work-preserving emulation of an

expander graph G.

Proof: Apply Theorem 55 with i = k((N!!log N,)kI(h+1)), f(R)"= O(R(k-i)/k), and P=

O(log(NII/R)). The inefficiency is at least I _ ft((N/ll logk Nll)1k+')). 0

Corollary 57 A butterfly network 11 cannot perfor. a work-preserving emulation of an ez-

pander graph G.

Proof: Apply Theorem 55 with A = O(NilloglogNIn/logNi), f(R) = O(R/logR), and

13 = O(Iog(Njl/R)). The inefficiency is at least f_ fl(log Ni/loglogNl). 0

Corollary 58 Any work-preserving emulation of a butterfly G by a k-dimensional mesh 1I has

slowdown at least 2 (Nf.A).

Proof: Apply Theorem 55 with R = O((NH log NG)kl(k+)), f(R) = O(R(k-,)Ik), and 0 =

O(log No). The inefficiency is at least I > fl((Arl/logk A0)Il/(k+l)). Q

Corollary 59 Any work-preserving emulation of a j-dimensional mesh G by a k-dinicnsional

mesh II, j > k, has slowdown at least '(1(I)/k)-

Proof: Apply Theorem 55 with R = 9((NAljN)kI(k+1)), f(R) - O(R(k-l)/k), and fP -

O(N'1). The inefficiency is at least I _ £((N,!/N) Vj(k+1)). [

3.3. EMULATIONS BY ARRAYS 127

3.3 Emulations by arrays

Although the arrays cannot perform real-time emulations of graphs with small diameter, we

can show that they can perform work.preserving emulations of complete binary trees, other

arrays, and butterflies. In each cae, we find an embedding if the guest graph into the array

with acceptable load, congestion, and dilation. The edges of the guest graph are emulated by

routing packets between the nodes of the linear array. All of the following results can be shown

to be tight by Corollaries 5.1, 58, and 59.

Observation 80 An N-node k-dinrensional mesh can perform a work.presertdng emulation of

an N(+l)ik/ log N-node complete binary tree.

Proof: An N(k+')/k)/ log N-node complete binary tree can be embedded in an N-node

k-dimensional mesh with load O(.Vl/k/logN), dilation 0(Nh/k/ logN), and congestion

ocjV1l(k+1)). 0

Observation 61 An N-node k-difnensional mesh can perform a work-preserving emulation of

an Nil-node j-ditnesional mesh, j > k.

Proof: An Ni/k-node j-dimensional mesh can be embedded in an N-node k-dimensional mesh

with load ,(i-k/k, congestion N(i-k)/lk, and dilation 1. 0

Observation 62 An Nil = nk-node k-dimensional mesh 1! can perform a work-preserving

emulation of an Na = n2m-node butterfly graph G.

Proof: An n2-node butterfly graph with 2n rows and n columns can be embedded in a

Nil = nk-node k-dimensional mesh with load 0(2"/nk- 1), congestion O(2n/nk- l), and dilation

0(n). 0

It is interesting to note that every connected network can perform a real-time emulation of

a linear array. Hence, Observations 60 through 62 can be modified to hold for all connected

networks.

128 CIIAPTEk 3. IVORCPRFSERVIUNG EMf ULATIONS

3.4 Emulations by complete binary trees

3.4.1 Work-preserving emulations of bounded-degree trees

In this section, we show that any N loglog N-node forest with maximum degree A can be embed.

ded in an N-node complete binary tree with load O(A loglogN), congestion O(AWloglogN),

and dilation O(logA). As a. corollary, there is a work-preserving emulation with slowdown

O(loglog N) of the class of bounded-degree forests by the class of complete-binary trees.

In constructing the embedding, we use the following well.known weighted-separator lemma

and its corollaries.

Lemmc, 63 Suppose that F = (11, E) is a forest where each vertex has been assigned some

non-negative weight. Then it is posuible to remove a single vertez flor V so that the rtmaining

vertices can be partitioned into two subforets F, and F2 such that no edge connects a vertex in

F with a vertex in F2, and F and F2 each contain at most 2/3 of the total weight.

Proof: Omitted.

Corollary 64 By rem, oving a single certe, it is possible to partition a forest F = (V,1) into

two subforests each containing at most 21VI/3 vertices.

Proof: Assign each vertex weight 1 and apply Lemma 63. 0

Corollary 65 By removing a set S of k vertices, it is poqsible to partition a forest F = (V, E)

into two subforests, F, and F2, each containing at mos- IV(l + (2/3)')/2 vertices.

Proof: Initially F, and F2 are empty and a third set R contains all of the vertices. Iterate

the following step k times. Apply Corollary 64 to split R into two subforests, then remove the

smaller subforest from R and add it to the smaller of F and F2 . At the end of each step, F

and F2 differ in size by at most 1R1. After k iterations, k contains at most lVi (2/ 3)k vertices.

Add R to the smaller of the two sets. 0

Corollary 68 Suppose that F = (V, E) is a forest where each vertex has been assigned some

non-negative weight. Then it is possible remove a set S of k vertices such from V such that the

3.4. EMULATIONS BY COMPLETE BINARY TREES 129

remaining LCrticcs can be partitioned into two subforeuts F, and F2 such that no edge connects

a vtrtcz in F, with a tvrtcz in F2, and each contains at most IVI(l + (2/3)(1)12)/2 vcrticc

and at most 5/6 of the total weight.

Proof: First apply Lernnim 63 to partition the forest into two subforests L and R, each con.

taining at most 2/3 of the weight. Next, apply Corollary 65 to split L into L, and L2, and R

into R, and R2. Let L, and R, have more weight than L2 and R2 respectively. Then both LI

and R, have at most 2/3 of tbe weight, and L2 and R2 have at most 1/6. Let F, = L, U R2

and F2 = L2 U RI. 0

With these tools in hand, we present the embedding.

Theorem 67 An Nloglog N-node forest with maximum degre A can be embedded in an N-

node complete binary tree wiih load I = 0(Aloglog N), congestion c = O(A2 loglogV), and

dilation d = O(log A).

Proof: The embedding begins by using Corollary 66 to find a set S of k E O(loglogA) nodes

that partitions the forest F = (VE) into two subforests, each containing at most IVI(1 +

I/log N)/2 vertices. We embed S at the root of the binary tree and then recursively embed

one or the subforests in the left subtree of the root, and the other in the right.

At levels below the root, we use Corollary 66 to simultaneously partition the vertices of the

forest and the edges connecting the forest to vertices that are embedded higher in the binary

tree. Let F = (Vi, E,) be a forest to be embedded in a subtree rooted at a level i node v, in the

binary tree. Let Ni be the number of edges connecting F to vertices embedded higher in the

binary tree; Nr is the congestion of the binary tree edge connecting vi to its parent. We assign

each vertex of F a weight equal to the number of neighbors it has that are embedded higher

in the binary tree. Using Corollary 66, we find a set Si of k vertices that partitions Pi into two

subforests, each of size at most jVi (1 + 1/log N)/2, and each having at most (5/61 A' ?dges to

vertices that are embedded higher in the tree. We embed the vertices of Si at vi and recursively

embed one of the subforests in the left subtree of vi, and the other in the right subtree.

To limit the dilation to some integer d, whenever i is a multiple of d we embed at vi not

only Si but also all of the vertices in F that have at least one neighbor embedded somewhere

higher in the binary tree.

130 CHAPTER J. WORK-PRESERVING EMULATIONS

We must now show how to choose d so that both the congestion and the load of the embed-

ding are small. Consider any simple path from a level i node vi in the binary tree to a level i+d

node, vi+,, where i is a multiple of d. At level i, we embed a separator of size k and at most N1j

other vertices that have at least one neighbor embedded higher in the tree. Since each of these

vertices has at most A neighbors, Ni+j < Ak + ANj. At level i + 1, we embed a separator of

size k that partitions FP+i into two subforests, each having at most (5/6)N+ 1 edges to vertices

embedded higher in the binary tree. Titus, at level i + 2, we have AN+2 :5 (5/6)Nj+t + Ak. In

general, N1+j is given by the recurrence

< f Ak + AN, j

I (5/O)N 1+ 1. 4+ Ak <j d

Solving the recurrence yields

N<+1 6Ak + (5/6y)'-A 1 .

We are now in a position to calculate the load and the congestion. The preceding argument

shows that for d r O(log A) and Ni e O(Ak), we have N,1++ :_ N1. Thus, in every simple

path between a node at level i and a node at level i + d, where i is a multiple of A, the

congestion starts at O(Ak) at level i, rises to at most O(6 2k) at level i + 1 and proceeds to

drop back clown to at most O(Ak) at level i + d. Thus, the congestion of the embedding is at

most O(A2 loglokN). Hlow large can the !oad be? At each node of the binary tree we embed

a separator of size k. For evrery i that is a multiple of d, we also embed a set nodes of size

A- O(Ak). Finally, at th'.. leaves we embed forests of size

N loglog N((1 + I/log N)/'i)IV

which is at most O(loglog N). Thus the load is at most O(A loglog N). 0-

Corollary 68 There is a work-preserving emulation of the class of boundcd-dcgrce forests by

the class of complete-binary trees with slowdown O(loglog N).

3.4.2 Congestion lower bound for complete ternary trees

In this section we show that any embedding of an N-leaf complete ternary tree T3 in an M-leaf

complete binary tree T2, N < M < 3N, in which the leaves of T3 are mapped to the leaves of

3.4. EMULATIONS BY COMPLETE BINARY TREES 131

Tj with load at most 21"* IV, fixed a < 1, has congestion at least fl(V/oglohjW). This lower

bound suggests, but does not prove, that real-time emulation of a complete ternary tree by a

complete binary tree is impossible.

Theorem 69 Any cinbedding, of an N-leaf compicle ternary trce T in art M-kof compkete

binary tre 72, N < U < 3N, in which the kavtcs of T.1 are mapped to the lcae.u of T2 with

load I = 2I"" IV fazcd ot < 1, has congcstion at lcast fl(."log W).

Proof: The proof has the following outline. Let L denote the number of leaves of T3 in a

subset S of the nodes of T3, and let u; be a base3 string representing L. First we show that

for any S, the number of l's in w is at most one plus the number of edges between S and '.

As a consequence, if S is the set of nodes mapped to a subtree rooted at a node u in T2, then

the congestion on the edge from the vi to its parent is at least as large as the number of l's in

w. Next, we construct a path V, ul,..., vjSjM in T from the root to to a leaf t'ug,% such that

there is a long sequence of nodes on the path, u vi+l1... ,vu+,-, such that for each vi, where

j _< i _< j +.9 - 1, the number of leaves of T3 mapped to the left and right subtrees of vi are

nearly equal. Let Si be the set of nodes of T mapped to the subtree rooted at vi, let L. be the

number of leaves of T3 in Si, and let wi be the base.3 string representing Li. To complete the

proof we show that for sonic i, where j < i 5 j + s - 1, there are many l's in wi.

First we show that for any subset S of the nodes of T3, the number of l's in wv is at most

IEsi + 1, where Es is the set of edges in T3 connecting a node in S to a node in 3. The key

idea is that L can be expressed as a series of lEst + I terms, both positive and negative, where

each term is a perfect power of 3. If the root of T3 belongs to S, then the series begins with

the term N; otherwise it begins with 0. Thereafter, each edge in Es contributes a term to the

series. An edge between a node u on level I and its parent on level I - 1 contributes N/31 if u is

in S, and -N/31 otherwise. Because adding or subtracting a power of 3 can produce at most

one 1 digit in a base-3 number, the number of i's wv is at most IE(S)I + I..

Starting at the root, vo, we construct the path in 7' according to the following rule. Suppose

that vi is a node on the path. Then the next node on the path, vi+1 is the root of the left oi

right subtree of ni containing more leaves of T3. Let Li be the number of leaves of T3 mapped

to the subtree rooted at vi. Then vi+l contains at least Li/2 leaves of T3. We call the split at

132 CHAPTER 3. WORK.PRESERVING EMULATIONS

v, fair if both of its subtrees contain at most 1,j(1/2 + c) leaves of 7i, where r will h-- specified

later.

Next we put a lower bound on the length of the longest sequence of consecutive fair splits.

Let b be the nunblr of unfair splits on the path. The number of leaves of 7 mapped to the

leaf at tile end of the path is at least

Since tle load is at most 1, and 1 + z < ez12 for 0 :5 z _. 1, we have) I . Let s be the

length of the longest sequence of consecutive fair splits. Then s >_ log Al/b > rlog M/In 31.

We now show that in tihe longest sequence of consicutive fair splits UJVj+1,...,vj+v.ll

there must be a node vi, where I _ i < i + s - 1 such that there are many Is in w;. For the

moment, let us assume that at each node vi on the sequence, the number t,f leaves of 74 mapped

to each subtree of vi is exactly Lh/2. Then we can prove that at some node vi on the sequence,

the number of l's in the t most significant digits of wi is at least "V1, where t = (logs2)s.

Suppose that the the number of l's in uw is smaller than OF (otherwise we're done). The l's

in wj partition it into substrings consisting of O's and 2's only. In each substring, division by 2

either converts all of the O's to l's (leaving the 2's unchanged), or converts all of the 2's to l's

(leaving tGe O's unchanged). Thus, after division by 2, 0's and 2's are adjacent in at most VI

places in w$+i. Titus, there must be a substring of either VI 0'O or Vt 2's in wj+,. In either

case, after at most s divisions by 2 the substring is converted to all I's.

Unfortunately, a fair split at a node vi does not divide Li exactly by 2; it also adds as much

as cLi. For r :5 1/31, adding rLi does not change the t most significant bits unless a carry

propagates in. We need to show that our substring of VIF O's or 2's is not adversely affected

by carries. Since a carry into a substring of 2's turns them all into O's, we need only consider

the effect of a carry into a substring of O's. A carry into a substfing of O's converts the least

significant 0 in the substring into a 1, which is bad, because it reduces the length of the string.

However, 3 ./i/2 carries are required to modify the V/2 least significant O's in the substring.

Since at most one carry occurs at each of the s splits, and s < 3 /2, the length of the longest

string of O's never drops below V/tl2.

To finish, we choose values for r, 1, and i. To make the lower b .nd st:ong, we want to

make t large without making I too small. For any fixed or < 1, we can choose 1 =24 ,

3.5. EfULATIONS BY IJUTERFIY NETWORKS 133

= O(log log N), and r = i/3'. The congestion is at least V/2 = f)(/'ogiogN). 0

3.5 Emulations by butterfly networks

3.5.1 Work-preserving emulations of binary trees

When the Dhatt, Chung, Hong, Leighton, Rosenberg result (11 that a butterfly can emulate a

complete binary tree in real.time is combined with the material in Section 3.4, we find that there

is an O(log log N).thme work-preserving simulation of the class of binary trees on the butterfly.

Whether or not this emulation can be performed in real-time remains an open question.

3.5.2 Emulation of meshes

In this section we show that an O(N).node butterfly can emulate an N-node mesh with slow-

down 0(loglog N).

Theorem 70 An O(N)-node butterfly can cmulaic T steps of a VN x VW' i mesh in

0(Tloglog N) steps.

Proof: The trick is to divide the mesh into slightly overlapping submeshes, as shown in Figure 3.

1. Each log2 N xlog2 N submeish overlaps its neighbors in either 2 log N rows or 2 log N columns.

Since the subineshes overlap, some mesh nodes appear in as many as four submeshes. We call

two nodes in neighboring submeshes wates if they correspond to the same mesh node. Each

submesh is emulated by a different 0(log4 N).node subbutterfly. Since a single mesh node may

be emulated by several subbutterflies, the butterfly performs redundant computation.

A subbutterfly emulates the corresponding submesh by routing packets between each mesh

node and its neighbors. Since, an O(log'N).node subbutterfly can route any permutation

of O(log4 N) packets in O(loglogN) steps, the time to emulate each step of the submesh is

O0(loglog N).

The nodes on the borders of a submesh cannot be emulated by the corresponding subbut-

terily because they require inputs from mesh neighbors that the subbutterfly does not emulate.

As a consequence, nodes at distance 8 from the border can be emulated for only b steps. For-

tunately, every node at distance 6 < log N froin the border of one submesh has a mate at

13-1 CIAPTER 3. llORK.PIRESEkVING EMULATIONS

-' 2 i-. M

F~igure 3-1: The divilsion of the mesh hito subineshes. Each loj 2 N x lo? N submesh overlaps
itt neighbors in either 21gN rows or 2log columns.

distance or 2log N - 6 >_ log N in a neighl~orin- submesh. Thus, every mesh node can be,

emulated for the full log .IV steps in some subbutterfly.

To emulate T' > log N steps of the muesh, the T steps are broken into block$ of log N

consecutive steps. The time to emulate a block of log A" steps is O(log N log log N). Before the

next block cai, be emulated, the nodes within distan..t log N' of the borders of the tubmeshes

must be updated by their mates. Since au N-node butterfly can route any permutation of

N-packets in O(Iog.,N) steps, the updating takes 0(log N) time. The total time for T steps is
0 (T log log N.). 0

This emulation scheme has two main drawbacuks. First, the packets that are sent between

blocks to update the mates must each carry enough information to reflect the change, it) the

state of a mesh node over a period of logN steps. Such packets are unreasonably large. This

problem can be overcome by observing that only O(N/IgN) of the mesh nodes must be

updated. If these nodes are caefully positioned within their subbutterflies, it is possible to

route log N packets to each of them in O(log N) steps. Second, the Plowdown is too large. The

slowdown can be reduced fiom 0O(log log N) to 0O(log* N) by ot , each log2 NV X 1oS2 N

mesh recursively. A nmore sophisticated scheme for real-time emui,. is presented in [40].

3.5. EMULATIONS DY BUTTERFLY NETWORKS 135

3.5.3 Embedding the shuffle-exchange graph in the butterfly

In this section, we show how to embed an N-node shufle.ex.ltatnge graph in an O(N)-ni.de

butterfly graph with constant load, constant congestion, and O(log N) dilation. These graphs

we defined In Sections 1.7 and 1.5, respectively.

A constant congestion embedding requires that very few edges of the shu-fle.echange graph

be mappe| to long (more than constant length) paths in the butterfly. In addition, these paths

must not overlap each other very often. To ensure this, we use Waksinxn's observation [9$1

that the inputs and outputs of a Benes network can be connected in any permutation by a set

of disjoint paths. That is, if tle set of long paths can be decomposed into a coanstant number

of (partial) permutations of the inputs of the butterfly, the long paths can be embedded with

constant congestion. It is easy to see that we can embed the long paths in this manner when

there are at most a constant number of endpoints of long paths in any single butterfly row. (We

first route a path front each endpoint to the input of its row, which leaves us with a constant

number of permutations to route on the Benes network.)

We map the nodes of a shuffle.exchange graph to the nodes of a butterfly graph so that

1. at most a constant number of shuffle-exchange nodes are mapped to any one butterfly

node, azni

2. each butterfly row contains at most a constant number of shuffle-exchange nodes which

have any neighbor mapped to a distant node in the butterfly.

Short paths only contribute constant congestion since they have constant length. Long

paths only contribute constant congestion since we can route any permutation with congestion

2, and we only need to route a constant number of (partial) permutations. Also, the length of

the short paths is constant and the long paths is O(logn).

In particular, we map the nodes of a N = 2".node shuffle-exchange graph to the nodes of a

(n+2-log n)2 " +2-I1og - ,1-node butterfly graph. Each node in this N-node shuffle-exchange

graph has n bits in its label. A node in the butterfly can be specified by a row represented by

n + 2 - 1,v-n bits, and a level in the row. The level in the row corresponds to a bit that can be

flipped to enter another row. Thus, we first associate a shuffle-exclange node with a particular

row of the butterfly by removing logn - 1 adjacent bits of its label none of which are the least

136 CHlA PTER 3. WORK.PRESERVING EMULATIONS

significant bit, then we pick the level in the row which corresponds to where the least significant

bit o the shufle-excdange node appears in tle rows representation.

We map a shuffle.,exchange node to to a node in the butterfly as follows,

1. Consider the longest string of zeros in w ignoring the least significant bit, break ties by

choosing the first one fronm tie left.

2. Pick out logn - I bits as follows;

(4) If possible choose the 'og it - 1 bits after the zeros and before the lsb,

(b) otherwise if possible choose the log it - I bits preceding the longest string of zeros,

(c) otherwise choose the last log it - 1 bits of the string of zeros (note that in this cue

more than n - 2 log i bits are zeros).

3. Treat these bits as a number (it will be in tle range 0...-!), caH this number s, and the

sequence of bits a,.

.1. Remove tie bits of a from tv, extend the chosen string of zeros on the rirht (left) by a 01

(10) if tie bits were removed from the right (left) of the block of zeros, and cyclic shift

the resulting string so that s bits appear after the Ingest string of zeros, this specifies

ihe row.

Symbolically, we map to = _Oayb to row uO0W+ lu, or we map w = :aOkyb to row ul0k+lv,

with ybz = vu and JvJ = s. (Note that we map to a row with a unique longest string of zeros

not straddling the bit which is at the level of the butterfly node.) It is easy to see that the

least significant bit of w, b, is somewhere in the representation of the row. We choose the level

in the row to correspond to the position of b in the row's representation.

We must argue that the mapping achieves condition 1 and 2 above.

First, we introduce some more notation. We define a necklace to be a set of shumfle-exchange

nodes which are connected only by shuffle edges. Alternatively, a necklace is a set of nodes

having labels which are cyclic shifts of each other. A necklace's label is the lexicographically

minimum label of its nodes. We can specify a shuflle.exchanlge node by the label of its necklace

and the position of the least significant bit of the node's label in the necklace's label.

J.5. EMULATIONS BY BUTTERFLY NETWORKS 137

We define the domain of a butterfly node to be the set of shumefexchange nodes that are

mapped to it by our mapping.

Now we show that the mapping is at most two to one. That is, given a butterfly node (p, r)

we can describe at most two shuffle.exchange nodes that could possibly be mapped to (p,r)

as follows. Recall that a butterfly node (p,r) has all the bits of w in r's binary representation

except for a,. And these, we recover by 11..ing the length of the string after the longest group of

zeros in ?ls binary representation riot straddling the pth bit. Wo katow that we have to reinser.

them either directly before or directly after that group of zeros. This gives us all the bits of

the dom iL nodes except for & cyclic shift uncertainty. Thus, the domain of (p, r) can only be

nodes from two necklaces. Furthermore, the least significant bit of the 11odes' labels is uniquely

specified by the place where the pth bit of r's binary representation occurs in the necklaceil

labels, Titus only two shuffle.exchange nodes can be mapped to any node in the butterfly.

Finally, we argue that we map at most a constant number of.shuflh e xchange nodes with

distant neighbors to any butterfly row.

Notice that wo always ignore the value of the least significant bit in the mapping ofsltufle.

exchange nodes to butterfly nodes. Thus the mapping maps two shuflle.exchange nodes to two

nodes that only differ in the bit that can currently be changed by a butterfly edge. Thus, any

exchange edge needs only flip the bit- at the node's level, which only requires a path of length

2. Thus all exchange edges are embedded in short paths.

Now consider the shuMe edges. We show that at most a constant number of shuffle edges

leave any row of the butterfly. (It is easy to sw% that all the shuffle edges in a row are niapped

to single edges in the budterily graph.) Again, consider the inverse mapping of a buterflynoie

(p, r), to two shuffle.exchange nodes. The necklaces of the domain nodes of row r's nodes, aro-

the same for most of the row. They change only at certain transition levels in the row; levels,

p, in the row where the position of the longest string of zeros not straddling p changes, or levels

in the row where we become unsure or sure of which side of the zeros to replace the removed

bits, a,.

The position of the longest string of zeros not straddling p only changes at two points; inside

the row's unique longest string of zeros. When the row level is within logn hit positions to the

right of the longest string of zeros, we know that pieces of two shuffle.exchange necklaces could

138 CHAPTER 3. 11YORK-PRESERVING EMULATIONS

have been inapped to the row. Outside this raige we know that only one necklace is mapped to

the row: Inside the group of zero$ the bits were definitely taken out before the group of zeros,

and further to the right they were definitely taken out after the group of zeros. Thus entering

this stretch and leaving this stretch gives us two more bad levels. Thus we have four transition

levels in all, and for each of these at most four necklaces could enter or leave the row at any

of these levels. Thus at most 16 long shuffle edges can have endpoints in this row. (Carcful

counting can reduce this number to 6.)

Thus at most 16 long edges are adjacent to any row of the butterfly. This satisfies condition

2, above.

Thus, the shuffle-exchange graph can be embedded in the butterfly with constant congestion.

3.5.4 Layouts for the shuffle-exchange graph with optimal area and volume

The N-node butterfly can be laid out in O(N2/ log 2 IV) area (trivialiy),and in O(N3 2/loe/2 N)

volume (100]. Since the N-node shuflle.exchange graph can be embedded in the N-node but-

terfly with constant congestion, we can simply blowup these !ayouts by a constant factor to

obtain layouts for the shufle.exchange graph with eq.ivalent area and volume.

3.5.5 A work preserving emulation of a shuffle-exchange graph

We construct al O(log N)- step work-preserving simulation of the stuffle.exchange graph on

the butterfly by first embedding the shuffle-exchange graph in an N log N-node butterfly with

couista it congestion, and then embedding tle N log N-node butterfly in an N-node butterfly

in the natural way. It is not difficult to show that the N-node butterfly can then simulate the

Nig N-node shuiffle-exchange in O(log N) steps. Whether or not there is a real-time emulation

remains an interesting open question.

3.6 Emulations by shuffle-exchange graphs

3.6.1 Work preserving emulations of arbitrary binary trees

It is well known that the shuffle-exchange graph cal emulate a complete binary tree in real

time. Thus by the results of Section 3.4, we know that there is an O(loglogN)-time work-

3.6. EMULATIONS DY SHUFFLE-EXCHANGE GRAPHIS 139

prezerving en.,ulation of the class of binary trees on the shufle.exchange graph. Whether or not

this emulation can be made real.time remains an open question.

3.6.2 Embedding little butterflies in the shuffle-exchange graph

In this section we show how to embed M/log.Ak distinct M log At-node butterfly graphs in an

N = A12 shufle-exchange graph with load I = 2, congestion c = 0(1), and dilation d = 3. A

similar result was proved by Raghunathan and Saran [80]. We assume that Al = 2k. Thus each

row of the butterfly can be represented by a k-bit string, and each node of the shuffle-exchange

can be represented by a 2k-bit string.

To map M/logAl butterflies to the shuffle-exchange graph, we use the following easily

proven lemma.

Lemma 71 The set of k = log Al-bit string. has at least .M1/21ogM disjoint subsets each

containing log Af distinct ttrings which are cyclic shifts of each other.

For each of these subsets we pick the lexicographically minimum string to represent the

subsets. We associate the M/logAf butterflies two to one with the M/21ogA[representative

strings. Say butterfly i is associated with string w'. We map a node (p, r) in butterfly i to a

shuflle-exchange node by shuffling the bits of wi with the bits of r's representation, and choosing

the current bit to be under the image of r... That is, node (p, r) in butterfly i is mapped to

shuffle-exchange node r1
From a shuffle-exchange node we can recover the representative string wi by picking out

every other bit and shifting to the lexicographically minimum string. We find the row string by

picking out the other bits and shifting by the same amount. The position in the row is dearly

the number of shifts we used to get to wi and the row number.

To finish, we observe that each edge in any of the butterflies is mapped to a path of length

at most three in the shuflle-exchange graph since we either shift twice to reach (p+ 1, r)'s image,

or we exchange the current bit and shift twice to reach (p + 1, r..p...r,,)'s image.

Thus we can embed /7/logvN (v/'V'log /'N).node butterflies in an N-node shuffle-

exchange with load 2, congestion 0(1), and dilation 3.

This technique can be extended to prove that for any constant 0 < c < 1, N' distinct N" -

butterfly graphs can be embedded in an N-node shuffle-exchange.

1.10 CHAPTER 3. WORK.PRISERVING EM ULATIONS

3.6.3 Application to sorting on a shuffle-exchange graph

It is known that an N-node butterfly can sort A' packets with high probability in O(logN)

steps (53, 76, 84]. The result does not directly extend to the shufflo.exchange graph because the

shuflle.exchange graph does not have tile nice recursive structure possessed by the butterfly.

Iowever, by combining the embedding result of Section 3.6.2, the butterfly sorting algorithm

in [53], and the columnsort algorithm of [471, we can obtain an algorithm for sorting N packets

on an N.node shuffle.exchange in O(log N) steps with high probability.

3.6.4 Real time emulations of arrays

By combining asingle level of the kind of analysis in Section 3.5.3 with the result of Section 3.6.2,

we can emulate an array in real time on a shuffle-exchange graph. This is despite the fact that

any 0(1) to 1 embedding of an A-node array (with dimension 2 or more) in a shuffle exchange

graph has dilation fl(log log N) 111).

3.6.5 A work preserving emulation of the butterfly

By using standard techniques in routing normal hypercube algorithms, it is easily shown that

there is an O(log N)-step work-preserving simulation of a butterfly on a shuffle.exchange graph.

Whether or not there is a real-thne simulation remains an important open question.

Chapter 4

Minimum-cost spanning tree

4.1 Introduction

In this chapter we show that minimum-cost spanning tree is a special case of the closed serniring

path-finding problem [I, sections 5.6-5.91. For a graph of n vertices, the path-finding problem

can be solved sequentially in 0(n3) steps by a dynamic programming algorithm [37, 661 of which

the algorithms of Floyd [25] and Warshall [99] are special cases. This dynamic programming

algorithm has a well known O(n) step implementation on an n x ni mesh-connected computer

(6, 19, 22, 30, 861.

Previously known minimum-cost spanning tree algorithms for the mesh [6, 61] are based

on the recursive algorithm of Boruvka (also attributed to Sollin) [91, pp. 71-83], which is

complicated to implement. For example, the algorithm of [6] achieves 0(n) steps by reducing

the fraction of the mesh in use by a constant factor at each recursive call. The dynamic

programming algorithm has the same asymptotic running time but is much simpler.

The rest of this chapter consists of two short sections. In Section 4.2 we show how to cast

minimum-cost spanning tree as a path-finding problem. In Section 4.3, we briefly describe an

O(n) step mesh algorithm to solve the problem.

This chapter describes joint research with Serge Plotkin (65].

141

142 CHAI'TER 4. MINIM UM-COST SPANNING TREE

4.2 Reduction to a path-finding problem

In thils section we definle tile Inini muin.cost spanning tree problem and a related path.finding

problem. We give a recurrence for solving the path.finding problem via dynamic programming.

We then prove that the solution to tile path-fintding problem contains the solution to the

iliMiun.cost spanning tree problem.

Given an n-node connected I undirected graph G = (11E), where V is the set {1,...n),

and where eacti edge {i,j) in E has cost C = Cl, the minium-cost spanning tree problem is

to find a subgraph that connects the vertices in V such that the suin of the costs of tle edges in

the subgraph is minimum. We assume that the edge costs are unique. (If not, lexicographical

information can be added to make them unique.) For convenience, we also assume that if (i,j)

is not in B then it has cost OR. = C?. = oo.

The path-finding problem is to compute tile cost C for each 1 _ ij, k _< n of the shortest

(lowest-cost) path from i to j that passes through vertices only in the set (1,... ,k), where the

cost of a pathm is defined to be the highest cost of any edge on the path. For any i and j, the

shortest path from i to j with no intermediate vertex higher than k either passes through k or

does not. In the first case, the cost of the shortest path from i to j is either the co~t of the

shortest path from i to k or the cost of the shortest path fro 'i k to j, whichever is higher. In

the second case, we have C = C. • Thus, Ck can be computed by the recurrence
Ck= MilC-,l&XkIC }).

The following theorem shows that the unique minimum.cost spanning tree can be recovered

from the costs of the shortest paths.

Theorem 72 An edge {i,j) is in the unique mininmum-cost spanning tree if and only if 9. =

Proof: The proof has two parts. We first show that if {i,j) is a tree edge then Q = Ci. We

then show that if C9- = CS then the edge {i,j} is in the tree. First, assume that is a

tree edge, but that C9. 0 Ce,. Consider the cut of the graph that {ij} crosses, but no other

'For simplicity, we assume that the graph is connected. The same technique will find a minimum-cost spanning

forest of a disconnected graph.

4.3. IMPLEMENTATION ON A AfESII.CONNELXTED COMPUTER 1,13

tree edge crosses. Since C?. 0 CID, there must be some path from i to j whose highest.cost

edge has cost Cf < C6j. Hence, every edge on this path has cost less than CGj. This path must

cross the cut at least once. Replacing the edge (isj) by any edge on the path that crosses the

cut reduces the cost of the tree, a contradiction. Conversely, assume that Cj0; = C , but that

{ij) is not a tree edge. Adding the edge {ij) to the tree forms a. cycle whose highest-cost

edge costs more than than CP. Replacing this edge by (i,j) yields a tree with smaller cost, a'

contrr.liction. 0

4.3 Implementation on a mesh-connected computer

In this section we give a short description of an 0(n) step algorithm for solving the minimum.

cost spanning tree problem on an it x it mesh.connected computer. We assume that the diagonal

element in each mesh row can broadcast a value to the other elements of the row in a. single

step. This type of broadcast can be simulated by a mesh without this capability by slowing Zhe

algorithm down by a constant factor (45, 59, 60]. The algorithm proceeds as follows. We assume

that the input graph is given in the form of a matrix of edge costs CO which enters row-by.row

through the top of the mesh. Matrix row i is modified as it passes over rows I through i - I

and is stored when it reaches mesh row i. When matrix, row i passes over mesh row k, the value

CW- is broadcast right and left from the diagonal cell (k,k). Each cell (k,j), 1 : 5 < n knows

the value of ,kTl and computes
Ck = mi(k-' Ma(k-l Ck-1

=m Ij Imx{ik ,i }}.

which is passed down to the next mesh row. After reaching mesh row i, matrix row i stays there

until each matrix row I, i < I < it, above it has passed over it and then continues to propagate

down, passing over the rest of the matrix rows. The output matrix C' exits row.by.row from

the bottom of the mesh. By Theorem 72, the adjacency matrix of the minimum-cost spanning

tree can be constructed by comparing the inpu, and output matrices.

14-1 CJIA PTIER4. AtiIAI A~f. COST SPANiNINVG 7TREE,

Directions for further research

Packet routing algorithms, distributed random.*ccess machines, and network emulations are

the objects of ongoing research. This section presents some of the open questions and very

recent results in these areas.

Packet routing

Many challenging routing and sorting problems remain to be solved. As we mentioned in

Section 1.2, there is no efficient algorithm known for finding a schedule of length O(c-+ d) for a

set of packets whose paths have congestion c and dilation d. Also, there is no known algorithm

simpler titan that or Section 1.5 for routing onl an N-node butterfly il O(log N) steps using

constant-size queues. A simple FIFO queueing discipline performs well in simulations but has

eluded ainalysis.

Although Sections 1.9 und 3.6 provide randomized algorithms for sorting on the butterfly

and shuffle.exchange graphs in O(logN) steps using constatt-size queues, there are no known

deterministic algorithms for routing or serting on Lte butterfly or shuffle-exchange graphs in

O(logN) steps, even if large queues are allowed. Recently Cyper and Plaxton [211 discovered

a deterministic algor.thm for sorting on the shuffle-exchange graph ;n O(logN(loglogN) 2)

steps. Also, Upfal [95] recently found a deterministic algorithm for routing cn a inultibuttcrfly

network in O(logN) steps using constant-size queues. Hlowever, Upfal's algorithm does 1iot

combine multiple packets with the same destination. The only known deterministic algorithm

for sorting N packets on an N-node bounded-degree network in O(log N) steps [47] is based on

the complicated AKS network [2].

Routing in the presence of faults has become an area of intense research. Typically it

145

140 DIRECTIONS FOR FUNTHILE RESEARCIH

is assumed that some of tile edges or some of the nodes cannot transmit packets, and that

these failures are easily detected. It, is alio sometimes assumed that tile faults are distributed

randomly throughout the network. Sonic of the recent results are suiiarized below.

In 19S, Ilastad, Leighton, and Newman (31) presented simple randoilized on.ine also.

rithm for embedding anl Nv-node hypercube in N.node faulty hypercube with constant load,

congestion, dilation. Faults are assumed to occur at tile nodes randomly and independently

with some fixed probability p. As a consequence, the faulty hypercube can emulate a fault.

free hypercnbe with constant slowdown. Thus, it can route any permutation of iN packets in

O(log N) time using constant-size queues on the edges. In 1989 they discovered an O(logvN)-

step algorithm for routing directly ol the faulty hypercube (32. The algorithm is adaptitt in

the sense that packets alter their paths to avoid faults.

Rabin 1771 designed a fault-tolerant routing algorithm for the hypercube using error-

correcting codes. His idea is to break each message into smaller pieces anti encode them so

that the original message can be recovered from any majority of them. In the course of rout-

ing, pieces are lest if they attempt to use faulty edges, enter full queues, or fall to reach their

destinations quickly. Despite these losses, with high probability a majority of the pieces for

each message reach their destinations. Tile algorithm routes a permutation of N messages

in O(log N) time ol an N-node hypercube using constant-size queues at the nodes. Edges

are assumed to fail randomly and independently with probability I/ log2 N . li this scheme,

each message is broken into log N pieces. Attached to each piece is a O(log N).bit ticket of

error-correcting information. Thus, for the scheme to be efficient, messages must be ai least

fl(log2 N) bits long.

Rtaghavan [79] considered routing permutations on a faulty mesh. lie showed that on a

x vW mesh where nodes fail randomly and independently with some fixed probability

p 5 .29, every packet that can reach its destination does so in O(VAN'log IV) time. The algorithm

is randomized and uses queues of size O(Iog2 N). Itaghavan's result was improved by Karlin,

Leighton, Raghavan, and Thomborson, who showed that after sustaining k faults, a mesh can

route any permutation in min{,f'i + O(k2), Ni time.

In [52] we described an adaptive algorithm for routing on Upfal's multibutterfly [95] in the

presence of faults. We proved that an N-input multibutterfly can sustain k faults and still route

DIRECTIONS FOR FURTHER REARCH 1417

log jV permutations between some set of A' - O(k) inputs and A' - O(k) outputs in O(log N)

time. The multibutterfly is even more resilient to randomized faults. A specially modified twin
butterfly Call tolerate j\3/4 faults at internal nodes, and still route any log N permutations

of N packets in O(log N) time. Before routing begins, faulty regions are spliced out of the

multibutterfly. Thereafter, the packets route as if there were no faults.

Distributed random-access machines

ITo date, all DRAM algorithms solve graph theoretic problems. It is natural to wonder whether

there are other problem domains for which communication.efficient algorithms can be designed.

One difficulty faced in designing DRAM algorithms for other domains is the lack of uniform.

cost shared memory in the model, Unfortunately we haven't found any meaningful w y to

incorporate PRAM-like memory into the model.

Emulations

Chapter 3 leaves open several challenging problemis. For example, we do not know if there a

real-time simulation of a complete ternary tree on a complete binary tree. Another unresolved

question is whether there is a class of bounded-degree graphs that can efficiently emulate the

class of all bounded.degree graphs. If so, the graphs in this universal class must be expanders.

Schwabe recently resolved a long open question by proving that the butterfly and shuffle-

exchange graphs are computationally equivalent[85. lie showed that each network can perform

a real-time emulation of the other. The proof combines the techniques of embedding little

butterflies in a shuflle.exclhange graph from Section 3.6 (and vice versa) with the overlap strategy

from Section 3.5.2 tised by the butterfly to emulate the mesh.

1,18 DIRECTIONS FOR FURTEIiR RESEARCII

Bibliography

(11 A. V. Alto, J. E. llopcroft, anti J. D. Ullman. The Design arid Analy.is of Computer

Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] M. Ajtai, J. Komlos, and E. Szemeredi. An O(N log N) sorting network. In Proccedings

of the 15th Annual ACMC Symposiun on Theory of Computing, pages 1-9, April 1983.

[3) R. Aleliunas. Randomized parallel communication. In Proceedings of the A CM SIGA CT-

SICOPS Symposium on Principles of Distributed Computing, pages 60-72, August 1982.

[4) D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hariltonian circuits and

matchings. Journal of Computer and System Sciences, 18(2):155-193, April 1979.

[5) M. Atailah and U. Vislhkin. Finding Euler tours in parallel. Journal of Computer and

System Sciences, 29(3):330-337, July 1984.

[6] M. J. Atallah and S. R. Kocaraju. Graph problems on a inesh-connected processor array.

Journal of the ACM, 31(3):649-667, July 1984.

[7] B. Awerbuch, A. Israeli, and Y. Shiloach. Finding Euler circuits in logarithmic parallel

time. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pages

249-257, April 1984.

[8] D. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracomputer

and PRAM. In Proceedings of the 1983 International Conference on Parallel Processing,

pages 175-179. IEEE, August 1983.

[9] K. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring

Joint Computing Conference, volume 32, pages 307-314, 1968.

149

150 BIBLIOVRA PIY

[10) V. E. Benes. Mathematical Theory of Connecting Networks and Tlephone "afflic. Aca-

demic Press, New York, 1965.

(11] S. N. hatt, F. R. K. Chung, -.- W. l1ong ,. T. Leighton, and A. L. RosenbItrg. Optimal

simulations by butterly networks. In Proecdings of the 20th A nnual A Cf Symposium

on Th ory of Computing, pages 192-204, May, 19S8.

(12) S. N. Blihatt, F. I. K. Chung, F. T. Leighton, and A. L. Rosenberg. Optimal simulations of

tree machines. li Proceeding.i of the 27th Annual Symposium on Foundations of Computer

Science, pages 274-282. IEEE, October 186.

(13) S. N. Bhatt and 1. Ipsen. 'Embedding trees in the hypercube. Technical Report RKt-4.13,

Yale Uj~ivemisty, New Haven, CT, 1988.

[14 S. N. Bhatt and C. E, Leiserson. flow tG assemble tree machines. in F. P. Preparata,

editor, VLSI Theory. Volume 2 of Atvaces in Compuling Research, pages 95-114. JAI

Press, Greenwich, CT, 1984.

[15] Rt. P. Brent. The parallel evaluation of general. arithmetic expressions. Journal of the

A CM, 21(2):201-208, April 1974.

[160 R. P. Brent and It. T. Kung. A regular layout for parallel adders. IEE Transactions on

Cornwters, C-31i(3):260-26,, Marcli 1982.

[17] J. L. Carter and M. N. Wegimu., UniverW cllus of hash functions. Journal of Computcr

and Syslem Sciences, 18(2):143-154, April 1979.

118] It. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the

sum of observations. Annals of Mathenatical Statistics, 23:193-507, 1952.

[19] T. W. Christopher. An implementation of Warshall's algorithm for transitive closure on

a cellular computer. Technical Report 3 , Institute for Computer Researcd, University of

Chicago, Chicago, IL, 1973.

[20] I. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro and

macro techniques for designing parallel -lgolthms. In Proceedings of the 18th Annual

ACM Symposium on Thcory of Computing, pages 206-219, May 1986.

BIBLIOGRAPIY 151

[211 R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the

hypercube and related omputers. Unpublished manuscript.

(221 E. Dekel, D. Nassimi, and S. Sahul. Parallel matrix and graph algorithms. SIAM Journal

on Computing, 10(4):657-675, November 1981.

[23] A. K. Dewdney. Computer recreations. Scientific Amcrican, 252(6):18-29, June 1985.

(2.1] M. J. Fischer and R. E. Ladner. Parallel prefix computation. Journal of the ACM,

27(4):831-838, October 1980.

[25) R. W. Floyd. Algorithm 97: shortest path. Communications of the AGCM, 5(6):3,15, 1962.

(26) A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In

Proceedings of the 18th Annual ACA Symposium on Theory of Computing, pages 136-1,16,

May 1986.

[27] A. V. Goldberg and R. E. Tarjan. Solving minimum.cost flow problems by successive

approximation. In Proceedings of the 19th Annual ACM Symposium on Theory of Com-

puting, pages 7-18, May 1987.

(28) D. S. Greenberg, L. S. Heath, and A. L. Ro6enberg. Optimal embeddings of the FFT

graph in the hypercube. Unpublished manuscript.

[29) R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In Silvio Micali,

editor, Randomness and Computation.Volume 5 of Advances in Computing Research. JAI

Press, Greenwich, CT, 1989. To appear.

[30] L. J. Guibas, II. T. Kung, and C. D. Thompson. Direct VLSI implementation for combi-

natorial algorithms. In 0. L. Seitz, editor, Proceedings of the Caltech Conference on Very

Large Scale Integration, pages 509-525, Pasadena, CA, January 1979. Caltech Computer

Science Department.

[31] J. Hastad, T. Leighton, and M. Newman. Reconfiguring a hypercube in the presence

of faults. In Proceedings of the 19th Annual A CM Symposium on Theory of Computing,

pages 274-284, May 1987.

152 BIBLIOGRA P11 Y

[32] J. l[astad, T. Leighton, and M. Newman. Vast computation using faulty hypercubes. In

Procccdings of the 2lsL A nnal ACM Symposium on Theory of Computing, pages 251-263,

May 1989.

[33] W. D. Hills and G. L. Steele Jr. Data. parallel algorithms. Communications of the ACAI,

29(12):1170-1183, December 1986.

[34] D. Iloey and C. E. Leiserson. A layout for the shuffle.exchange network. II Procedings of

the 1980 International Conference on Parallel Processing, pages 329-336. IEEE, August

1980.

[35] A. It. Karlin and E. Upfal. Parallel hashing - an efficient implementation of shared

memory. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing,

pages 160-168, May 1986.

[36] J. Kilian, July 1936. Private communication.

[37] S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E.

Shannon and J. McCarthy, editors, Automata Studies, pages 3-41. Princeton University

Press, Princeton, NJ, 1956.

(38] D. J. Kleitman, F. T. Leighton, M. Lepley, and G. L. Miller. New layouts for the shuffle.

exchange graph. In Procecdings of (hc 13t!! Annual ACM .yi.posiurn on Theory of Corn.

puting, pares 278-292, May 1981.

[39] D. E. Knuth. The Art of Computer Programminq, volume 1. Addison-Wesley, Reading,

MA, second edition, 1973.

[40] It. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg. Work-preserving emulations

of fixed-connection networks. In Proceedings of the 21st Annual A CM Symposium on

Theory of Computing, pages 227-240, May 1989.

[41] D. Krizanc, S. Rajasekaran, and Th. Tsantilis. Optimal routing algorithms for mesh-

connected processor arrays. In J. Reif, editor, Aegean WIorkshop on Computing: VLSI

Algorithms and Architectures. Volume 319 of Lecture Notes in Computer Science, pages

411-422. Springer-Verlag, New York, NY, June 1988.

BIBLIOGRAPHY 153

[42] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algo.

rithms. Unpublished manuscript.

[43] M. Kunde. Routing and sorting or mesh.connected arrays. In J. Reif, editor, Aegcan

Workshop on Computing: VLSI Algorithms and Architectures. Volume 319 of Lecture

Notes in Computer Science, pages ,123-433. Springer-Verlag, New York, NY, June 1988.

[44] I1. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In I. S. Duff and G. W.

Stewart, editors, Sparse Matrix Proceedings, pages 256-282. SIAM, 1978.

[451 F. T. Leighton. An introduction to the theory of networks, parallel computation and

VLSI design. Unpublished manuscript.

[46] F. T. Leighton. Complexity Issues in VLSI. MIT Press, Cambridge, MA, 1983.

[47] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions

on Computers, C-34(4):344-354, April 1985.

[48] F. T. Leighton, M. Lepley, and G. L. Miller. Layouts for the shuffle-exchange graph

based on the complex plane diagram. SIAM Journal of Algebraic and Discrete Aethods,

5:177-181.

[19] F. T. Leighton, F. Makedon, and I. Tollis. A 2N - 2 step algorithm for routing in an

N x N mesh. In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and

Architectures, pages 328-335, June 1989.

[50] F. T. Leig' -n and G. L. Miller. Optimal layouts for small shuffle-exchange graphs. In

J. Gray, editor, VLSI 81-Very Large Scale Integration, pages 289-299. Academic Press,

1981.

[51] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts. SIAM Journal

on Computing, 15(3):793-813, August 1986.

[52] T. Leighton and B. Maggs. Expianders might be practical: fast algorithms for routing

around faults in multibutterflies. In Procecdings of the 30th Annual Symposium on Foun-

dations of Computer Science, pages 384-389. IEEE, October 1989.

151 BIBLIOGRA PIY

(531 T. Leighton, D. Maggs, and S. Rao. Universal packet routing algorithms. In Procecdings of

the 29th Annual Symposium on Foundations of Computer Scicnce, pages 256-271. IEEE,

October 1938.

(-1] T. Leighton and S. Rao. An approximate max-flow mn-cut theorem for uniform multi.

commodity flow problems with applications to approximation algorithms. In Procedings

of the 29th Annual Symiposiuma on Foundations of Computer Science, pages 422-131.

IEEE, October 1988.

[55] C. E. Leiserson. Arca-Efi cient VLSI Computation. MiT Press, Cambridge, MA, 1983.

156] C. E. Leiserson. Fat.trees: universal networks for hardware-efficient supercomputing.

IEEE Transactionis on Computers, C-3-1(10):892-901, October 1985.

[57) C. E. Leiserson and B. M. Maggs. Communication-efficient parallel graph algorithms.

Technical Memo MIT/LCS/TM.318, MIT Laboratory for Computer Science, Cambridge,

MA, December 1986.

[5S] C. E. Leiserson and B. M. Maggs. Communication.efficient parallel graph algorithms for

distributed random-access machines. Algorithrnica, 3:53-77, 1988.

(59] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimization of synchronous circuitry by

retiming. In R. Bryant, editor, Third Caltech Confercince on ery Large Scale Integration,

pages 87-116, Rockville, MD, March 1983. Computer Science Press.

[60] C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI and

Computer Systems, 1(1):41-16, 1983.

[61] K. N. Levitt and W. H. Kautz. Cellular arrays for the solution of graph problems.

Cornmunications of the ACM, 15(9):789-801, September 1972.

(62] R. J. Lipton and R. E. Tarjan. A planar separator theorem. SIAM Journal of Applied

Mathematics, 36(2):177-189, April 1979.

[631 B. M. Maggs. A scheme for area-universal computation. Unpublished manuscript.

BIBLIOGRAPHY 155

[cl] D. M. Maggs. Conlunnication.efficient parallel graph algorithins. Master's thesis, De.

partmnent of Electrical Engineering and Computer Srience, Massachusetts Institute of

Technology, Cambridge, MA, May 1986.

[65] B. M, Maggs and S. A. Plotkin. Minimum-cost spanning tree as a path-finding problem.

Information Procesming Letters, 26(6):291-293, January 1988.

[661 R. McNaughton and It. Yamada. Regular expressions and state graphs for automata.

IRE Trvnsactions on Electronic Computers, 9(1):39-17, 1960.

(67) F. Meyer auf der leide. Efficient simulations among several models of parallel computers.

SIAM Journal on Computing, 15(1):106-119, February 1986.

[68] G. Miller and J. Reif. Parallel tree contraction and its application. In Proceedings of

the 26th Annual Symposium on Foundations of Computer Science, pages 478-489. IEEE,

October 1985.

[69] R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout. Meshes with reconfigurable

buses. In J. Allen and F. T. Leighton, editors, Advancrcd Re.earch in VLSI: Proceedings

of the Fifth MIT Conference, pages 163-178, Cambridge, MA, April 1988. MIT Press.

[70] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gener-

alized connection network. Journal of the ACM, 29(3):642-667, July 1982.

(71] Yu. Ofman. On the algorithmic complexity of discrete functions. Soviet Physics - Doklady,

7(7):589-591, 1963. English translation.

[721 C. It. Papadimitriou and M. Yannakak-is. Towards an architecture-independent analysis

of parallel algorithms. In Procecdings of the 20th Annual A CM Symposium on Theory of

Computing, pages 510-513, May 1988.

[73] J. K. Park. A deterministic routing algorithm for the butterfly fat-tree. Unpublished

manuscript.

[74) D. Peleg and E. Upfal. The token distribution problem. In Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, pages 418-127. IEEE, October 1986.

156 BIBLIOGRAPIIY

[75] C. F. Pfister and V. A. Norton. 'hot spot' contention and combining in multistage

interconnection networks. IEEE Tra actions on Computers C-3.1(10):9.13-9.18, October

1985.

(70] N. Pippenger. Parallel communication with limited buffers. it Procecdrngs of the 25th

Anruol Symposium on Foundations of Computer Science, pages 127-136. IEEE, October

198.1.

1771 M. 0. 2abin, Efficient dispersal of information for security load balancing wnd fault

tolerance. Journal of the ACM, 1989. To appear.

(78] P. Raghavan. Probabilistic construction of deterministic algorithms: approximate packing

integer programs. Journal of Computer and System Sciences, 37(4):130-1,13, October

1988.

179] P. Raghav . Robust algorithms for packet routing in a mesh. In Proceedings of the 1989

ACM Symposium on Parallel Algorithms arid Architectures, pages 3,14-350, June 1989.

[80] A. Raghunathan and II. Saran. Is the shuffle.exchange better than the butterfly? Un-

published manuscript.

[81] A. G. Ranade. How to emulate shared memory. In Procedings of the 28th Annual

Symposium on Foundations of Computer Science, pages 185-19-1. IEEE, October 1987.

[82) A. G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, New Haven.

CT, 1988.

[83] J. 1[. Reif. Personal communication.

[841 J. 11. Reif and L. C. Valiant. A logarithmic time sort for linear size networks. Journal of

the ACM, 34(1):60-76, January 1987.

[851 E. J. Schwabe. The butterfly and shuflle.exchange graph are computationally equivalent.

Unpublished manuscript.

[86] F. L. Van Scoy. The parallel recognition of classes of graphs. IEEE Transactions on

Computers, C-29(7):563-570, July 1980.

BIBLIOGRA VIl Y 157

(87] M. Sekanina. On an ordering of the set of vertices or a connected graph. Publications of

the Faculty of Science, Unuersity of Brno, 412:137-1-12, 1960.

(88] Y. Shiloach and U. Vishkin. An O(logn) p.%r Hlel connectivity algorithm. Journal of

Algorithms, 3:57-67, 1982.

(89) J. Spencer. Ten Lectures on the Probabilstin Method. SIAM, Philadelphia, PA, 1987.

[901 D. Steinberg and M. Rodeh. A layout for t' - shuMe.exchange network with

O(N 2/ 1oe !2 N) area. IEEE 'J'mnsactions on Computers, C-30(12):977-982, December

1981.

[91) R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1983.

[92] R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree func-

tions in logarithmic parallel time. In Proceedings of the !5th Annual Symposium on

Foundations of Computer Science, pages 12-20. IEEE, October 198-1.

[93] C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Department of Computer

Science, Carnegie-Mellon University, Pittsburgh, PA, 1980.

(941] E. Upfal. Efficient schemes for parallel communication. In Proceedings of the ACM

SIGA CT-SIGOPS Symposium on Principles of Distributed Computing, pages 55-59, Au-

gust 1982.

[95] E. Upfal. An O(logN) deterministic packet routing scheme. In Pro-ccdings of the 21st

Annual A CM Symposium on T]heory of Computing, pages 2.11-250, May 1989.

[96] L. G. Valiant. A sch.me for fast parallel communication. SIAM Journal on Computing,

11(2):350-361, May 1982.

[97] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In

Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pages 263-

277, May 1981.

[98] A. Waksman. A permutation network. Journal of the ACM, 15(1):159-163, January 1968.

168 BIBLIOGRAPHY

09] S. Warsh'dl. A theorem on boolean matrices. Jourval of the ACM, 9(l1):11-12, January

1962.

[100)). S. Wise. Compact layouts of Banyan/FFT networi's. In II. T. Kung, 11. Sproull, and

G. Steele, editors, CMU Conference on ILS! Systems ard Computations, pages 186-195,

Rockvill, MD, Oct-ober 1981. Computer Sience Press.

(101] J. C. Wyllie. The Complexity of Parallel Computations. PhD thesis, Cornell University,

Ithaca, NY, August 1979.

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

